【题解】 Luogu P1541 乌龟棋总结 (动态规划)
题目背景
小明过生日的时候,爸爸送给他一副乌龟棋当作礼物。
题目描述
乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数)。棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起点出发走到终点。
乌龟棋中M张爬行卡片,分成4种不同的类型(M张卡片中不一定包含所有4种类型的卡片,见样例),每种类型的卡片上分别标有1、2、3、4四个数字之一,表示使用这种卡片后,乌龟棋子将向前爬行相应的格子数。游戏中,玩家每次需要从所有的爬行卡片中选择一张之前没有使用过的爬行卡片,控制乌龟棋子前进相应的格子数,每张卡片只能使用一次。
游戏中,乌龟棋子自动获得起点格子的分数,并且在后续的爬行中每到达一个格子,就得到该格子相应的分数。玩家最终游戏得分就是乌龟棋子从起点到终点过程中到过的所有格子的分数总和。
很明显,用不同的爬行卡片使用顺序会使得最终游戏的得分不同,小明想要找到一种卡片使用顺序使得最终游戏得分最多。
现在,告诉你棋盘上每个格子的分数和所有的爬行卡片,你能告诉小明,他最多能得到多少分吗?
输入输出格式
输入格式:
输入文件的每行中两个数之间用一个空格隔开。
第1行2个正整数N和M,分别表示棋盘格子数和爬行卡片数。
第2行N个非负整数,a1a2……aN,其中ai表示棋盘第i个格子上的分数。
第3行M个整数,b1b2……bM,表示M张爬行卡片上的数字。
输入数据保证到达终点时刚好用光M张爬行卡片。
输出格式:
输出只有1行,1个整数,表示小明最多能得到的分数。
输入输出样例
9 5
6 10 14 2 8 8 18 5 17
1 3 1 2 1
73
说明
每个测试点1s
小明使用爬行卡片顺序为1,1,3,1,2,得到的分数为6+10+14+8+18+17=73。注意,由于起点是1,所以自动获得第1格的分数6。
对于30%的数据有1≤N≤30,1≤M≤12。
对于50%的数据有1≤N≤120,1≤M≤50,且4种爬行卡片,每种卡片的张数不会超过20。
对于100%的数据有1≤N≤350,1≤M≤120,且4种爬行卡片,每种卡片的张数不会超过40;0≤ai≤100,1≤i≤N;1≤bi≤4,1≤i≤M。
Solution:
这题思路也很简单,就是一个DP嘛,定义状态是最重要的,状态定义好了,打代码也就容易了。
我首先呢想的是1.二维数组,用状态压缩,枚举出到第几张牌了,emmmm120多张牌,多么愚蠢的想法。
[emmm...棋和牌差别不大,忽略忽略]
2.二维数组,枚举现在的位置和出到第几张牌了,emmmm无法记录每张牌用了多少
于是乎,一个思路就出现在我的脑海中->定义一个四维数组[ 就四张牌 ],每一维表示那一种牌用了多少张 恩恩
那现在走到哪一个格子了呢???多么简单的问题----->你出了那些牌不都知道了,肯定可以计算出到了哪一个格子了
Exp:f[i][j][k][l]时 到了1+1*i+2*j+3*k+4*l 为什么要加一呢 注意这句话 由于起点是1,所以自动获得第1格的分数6。
动归转移方程:
从①f[i-1][j][k][l]+mark[i][j][k][l] ②f[i][j-1][k][l]+mark[i][j][k][l]
③f[i][j][k-1][l]+mark[i][j][k][l] ④f[i][j][k][l-1]+mark[i][j][k][l] ⑤f[i][j][k][l]中选一个最大值更新f[i][j][k][l]的值
emmmm 贴代码吧
对了 还有一个记录每种牌的个数 这样就不会出现违规(就会用牌数超实际存在的牌)的情况
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
using namespace std;
int read()
{
int x=;char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<='')x=(x<<)+(x<<)+ch-'',ch=getchar();
return x;
}
int n,m;
int mark[+],mm[],f[][][][];
int main()
{
n=read();m=read();
for(int i=;i<=n;i++)mark[i]=read();
for(int i=;i<=m;i++)
{
int box=read();
mm[box]++;
}
f[][][][]=mark[];
for(int i=;i<=mm[];i++)
for(int j=;j<=mm[];j++)
for(int k=;k<=mm[];k++)
for(int l=;l<=mm[];l++)
{
int num=i*+j*+k*+l*+;
if(i!=)
{
if(f[i][j][k][l]<f[i-][j][k][l]+mark[num])
{
f[i][j][k][l]=f[i-][j][k][l]+mark[num];
}
}
if(j!=)
{
if(f[i][j][k][l]<f[i][j-][k][l]+mark[num])
{
f[i][j][k][l]=f[i][j-][k][l]+mark[num];
}
}
if(k!=)
{
if(f[i][j][k][l]<f[i][j][k-][l]+mark[num])
{
f[i][j][k][l]=f[i][j][k-][l]+mark[num];
}
}
if(l!=)
{
if(f[i][j][k][l]<f[i][j][k][l-]+mark[num])
{
f[i][j][k][l]=f[i][j][k][l-]+mark[num];
}
}
}
cout<<f[mm[]][mm[]][mm[]][mm[]];
return ;
}
【题解】 Luogu P1541 乌龟棋总结 (动态规划)的更多相关文章
- CJOJ 1087 【NOIP2010】乌龟棋 / Luogu 1541 乌龟棋(动态规划)
CJOJ 1087 [NOIP2010]乌龟棋 / Luogu 1541 乌龟棋(动态规划) Description 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 乌龟棋的棋盘是一行N个格子,每个 ...
- Luogu P1541 乌龟棋(NOIP2010TG)
自己的第一篇博文 祭一下祭一下 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点, ...
- LuoGu P1541 乌龟棋
题目传送门 乌龟棋我并不知道他为啥是个绿题0.0 总之感觉思维含量确实不太高(虽然我弱DP)(毛多弱火,体大弱门,肥胖弱菊,骑士弱梯,入侵弱智,沙华弱Dp) 总之,设计出来状态这题就很简单了 设 f[ ...
- Luogu P1541 乌龟棋 【线性dp】
题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行 N 个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第 N 格是终点,游戏要求玩家控制一个乌龟 ...
- P1541 乌龟棋(动态规划)
(点击此处查看原题) 题意 此处有n个位置,记为1~n,每个位置上都对应一个权值,乌龟从编号为1的位置出发,利用m张爬行卡片到达位置n,爬行卡牌有四种,分别可以让乌龟移动1,2,3,4步,并保证将m张 ...
- [NOIp2010] luogu P1541 乌龟棋
英语老师讲 mind map,真想说一句"声微饭否".为什么wyy的歌词总是快一点点.在报csp. 题目描述 你在一个序列上向正方向行走,起点是 a[0]a[0]a[0].每一步可 ...
- P1541 乌龟棋 题解(洛谷,动态规划递推)
题目:P1541 乌龟棋 感谢大神的题解(他的写的特别好) 写一下我对他的代码的理解吧(哎,蒟蒻就这能这样...) 代码: #include<bits/stdc++.h> #define ...
- 洛谷 p1541乌龟棋
洛谷 p1541乌龟棋 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行NN个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第NN格是终点,游戏 ...
- 洛谷P1541 乌龟棋 [2010NOIP提高组]
P1541 乌龟棋 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家 ...
随机推荐
- FakeID签名漏洞分析及利用(二)
本文转自:http://blog.csdn.net/l173864930/article/details/38409521 继上一次Masterkey漏洞之后,Bluebox在2014年7月30日又公 ...
- 20155307实验八 《网络对抗》 Web基础
20155307实验八 <网络对抗> Web基础 实验过程 Web前端:HTML 使用netstat -aptn查看80端口是否被占用(上次实验设置为Apache使用80端口),如果被占用 ...
- 20155334 《网络攻防》 Exp6 信息搜集与漏洞扫描
20155334 Exp6 信息搜集与漏洞扫描 一.实验问题回答 哪些组织负责DNS,IP的管理? 答:互联网名称与数字地址分配机构 ICANN ,该机构决定了域名和IP地址的分配.负责协调管理DNS ...
- 【转】CentOS 5 上安装git
转自 http://www.cnblogs.com/Neddy/archive/2011/02/28/1967548.html 注意安装的时候 都要以root身份 //先安装git依赖的包 yum i ...
- C#基础之.NET环境下WebConfig的加密
在将ASP.NET项目部署到服务器上时,内网环境下Web.Config往往是直接复制过去.对于外网环境,则需要对Web.Config文件进行加密. .NET环境下一共提供了2种方式的加密功能,分别是D ...
- [SDOI2010]地精部落[计数dp]
题意 求有多少长度为 \(n\) 的排列满足 \(a_1< a_2> a_3 < a_4 \cdots\) 或者 $a_1> a_2 < a_3 > a_4\cdo ...
- OPPO A7X 刷机小结
OPPO A7X 刷机小结: 概述:根据网上找到的教程(MTK模式刷机教程),没有成功.在QQ上询问一位提供刷机服务的大神,说是只有老版本才能刷. 操作步骤: 刷机工具: MediaTek SP Fl ...
- 关于Unity物理事件的执行顺序的最新理解
物体A: public class A:{ B b; void FixedUpdate(){ if(input.GetKeyDow(Keycode.I)) { collider.enable=fals ...
- 微软职位内部推荐-Senior NLP Scientist
微软近期Open的职位: Job Title: Senior NLP Scientist Location: Suzhou, China Suzhou, one of the most vibrant ...
- PHP 设计模式六大原则
http://www.cnblogs.com/yujon/p/5536118.html 设计模式六大原则(1):单一职责原则 不要存在多于一个导致类变更的原因.通俗的说,即一个类只负责一项职责 设计模 ...