点此看题面

大致题意: 有一个\(N*N\)的\(01\)矩阵,可以任意交换若干行和若干列,问是否有方案使得左上角到右下角的连线上全是\(1\)。

题意转换

首先,让我们来对题意进行一波转化。

如果我们把\(x\)坐标看作一张二分图左半部分的点,把\(y\)坐标看作右半部分的点,那么题意就转化成了求这张图是否存在完美匹配

又由于每次只能交换行与列,因此每行存在的元素每列存在的元素是固定不变的。

因此,在行与列不停交换的过程中,这张图的匹配数是保持不变的

综上所述,我们只要对于每一个1,将它的\(x\)坐标与\(y\)坐标之间连一条边,然后用匈牙利算法判断是否存在完美匹配即可。

我想不用再多说什么了吧,直接上代码。

代码

#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define uint unsigned int
#define LL long long
#define ull unsigned long long
#define swap(x,y) (x^=y,y^=x,x^=y)
#define abs(x) ((x)<0?-(x):(x))
#define INF 1e9
#define Inc(x,y) ((x+=(y))>=MOD&&(x-=MOD))
#define ten(x) (((x)<<3)+((x)<<1))
#define N 200
#define add(x,y) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y)
using namespace std;
int n,ee,a[N+5][N+5],lnk[N+5];
struct edge
{
int to,nxt;
}e[N*N+5];
class FIO
{
private:
#define Fsize 100000
#define tc() (FinNow==FinEnd&&(FinEnd=(FinNow=Fin)+fread(Fin,1,Fsize,stdin),FinNow==FinEnd)?EOF:*FinNow++)
#define pc(ch) (FoutSize<Fsize?Fout[FoutSize++]=ch:(fwrite(Fout,1,FoutSize,stdout),Fout[(FoutSize=0)++]=ch))
int f,FoutSize,OutputTop;char ch,Fin[Fsize],*FinNow,*FinEnd,Fout[Fsize],OutputStack[Fsize];
public:
FIO() {FinNow=FinEnd=Fin;}
inline void read(int &x) {x=0,f=1;while(!isdigit(ch=tc())) f=ch^'-'?1:-1;while(x=ten(x)+(ch&15),isdigit(ch=tc()));x*=f;}
inline void read_char(char &x) {while(isspace(x=tc()));}
inline void read_string(string &x) {x="";while(isspace(ch=tc()));while(x+=ch,!isspace(ch=tc())) if(!~ch) return;}
inline void write(int x) {if(!x) return (void)pc('0');if(x<0) pc('-'),x=-x;while(x) OutputStack[++OutputTop]=x%10+48,x/=10;while(OutputTop) pc(OutputStack[OutputTop]),--OutputTop;}
inline void write_char(char x) {pc(x);}
inline void write_string(string x) {register int i,len=x.length();for(i=0;i<len;++i) pc(x[i]);}
inline void end() {fwrite(Fout,1,FoutSize,stdout);}
}F;
class Class_HungarianAlgorithm//匈牙利算法模板
{
private:
int s[N*N+5],vis[N*N+5];
public:
inline void Clear() {for(register int i=0;i<=n;++i) s[i]=vis[i]=0;}//清空数组
inline bool Match(int x,int Time)
{
for(register int i=lnk[x];i;i=e[i].nxt)
{
if(!(vis[e[i].to]^Time)) continue;
vis[e[i].to]=Time;
if(!s[e[i].to]||Match(s[e[i].to],Time)) return s[e[i].to]=x,true;
}
return false;
}
}HungarianAlgorithm;
inline void Clear() {HungarianAlgorithm.Clear();for(register int i=ee=0;i<=n;++i) lnk[i]=0;}
int main()
{
register int i,j,T,flag;F.read(T);
while(T--)
{
for(Clear(),F.read(n),flag=i=1;i<=n;++i) for(j=1;j<=n;++j) F.read(a[i][j]),a[i][j]&&(add(i,j));//读入,对于黑格在i与j之间建一条边
for(i=1;i<=n&&flag;++i) flag&=HungarianAlgorithm.Match(i,i);//判断是否有匹配
F.write_string(flag?"Yes\n":"No\n");//输出答案
}
return F.end(),0;
}

【BZOJ1059】[ZJOI2007] 矩阵游戏(匈牙利算法)的更多相关文章

  1. BZOJ 1059: [ZJOI2007]矩阵游戏 匈牙利算法

    1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2351  Solved: 1156 题目连接 http:// ...

  2. 【ZJOI2007】【BZOJ1059】矩阵游戏 匈牙利算法

    题目描述 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏.矩阵游戏在一个N*N黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行两种操作:行交换 ...

  3. bzoj 1059 [ZJOI2007]矩阵游戏——匈牙利算法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1059 发现不管怎么换,同一列的元素还是在同一列,同一行的元素还是在同一行. 所以必要条件是每 ...

  4. BZOJ1059 ZJOI2007 矩阵游戏 【二分图匹配】

    BZOJ1059 ZJOI2007 矩阵游戏 Description 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏--矩阵游戏.矩阵游戏在一个N*N黑白方阵进行(如同国际象棋一 ...

  5. BZOJ 1059: [ZJOI2007]矩阵游戏( 匈牙利 )

    只要存在N个x, y坐标均不相同的黑格, 那么就一定有解. 二分图匹配, 假如最大匹配=N就是有解的, 否则无解 ------------------------------------------- ...

  6. BZOJ1059 [ZJOI2007]矩阵游戏 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1059 题意概括 有一个n*n(n<=200)的01矩阵,问你是否可以通过交换整行和整列使得左 ...

  7. [bzoj1059][ZJOI2007]矩阵游戏_二分图最大匹配

    矩阵游戏 bzoj-1059 ZJOI-2007 题目大意:给定一个n*n的棋盘,上面有一些格子被染黑,剩下都是白色.你每次可以交换两列或者两行,问你能否通过一系列操作使得棋盘的主对角线上的格子全是黑 ...

  8. [BZOJ1059]:[ZJOI2007]矩阵游戏(二分图匹配)

    题目传送门 题目描述 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏.矩阵游戏在一个N×N黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行两种 ...

  9. [bzoj1059] [ZJOI2007] 矩阵游戏 (二分图匹配)

    小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏--矩阵游戏.矩阵游戏在一个N *N黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行两种操作:行交换操作:选 ...

  10. bzoj1059: [ZJOI2007]矩阵游戏

    二分图匹配. 补充,感觉之前说的不够详细,如果有完美匹配的话,每行都有一个对应的列,那么换来换去以后,对角线就全黑了... #include<cstdio> #include<alg ...

随机推荐

  1. python编译环境安装指南

    windows系统先安装python解释器: windows版本exe安装文件下载地址:https://www.python.org/ftp/python/2.7.12/python-2.7.12.m ...

  2. [sql Server]除非另外还指定了TOP 或 FOR XML,否则,ORDER BY 子句在视图、内联函数、派生表、子查询和公用表表达式中无效

    今天遇到一个奇怪的问题,项目突然要从mysql切换到sql server数据库,包含order by 子句的嵌套子查询报错. 示例:select top 10 name,age,sex from ( ...

  3. C语言中malloc函数的使用方法

    C语言中malloc是动态内存分配函数.函数原型:void *malloc(unsigned int num_bytes);参数:num_bytes 是无符号整型,用于表示分配的字节数.返回值:如果分 ...

  4. JMETER进行REST API测试(分步指南)

    我确定你在这里是因为你需要加载测试Json Rest API.这并不奇怪,因为Rest API现在越来越受欢迎. 这本指南的目的:帮助您进行负载测试一个Json的 REST API 通过一个具体的例子 ...

  5. JQuery的extend扩展方法

    jQuery.extend 函数使用详解   JQuery的extend扩展方法:      Jquery的扩展方法extend是我们在写插件的过程中常用的方法,该方法有一些重载原型,在此,我们一起去 ...

  6. 02.Spring Ioc 容器 - 创建

    基本概念 Spring IoC 容器负责 Bean 创建.以及其生命周期的管理等.想要使用 IoC容器的前提是创建该容器. 创建 Spring IoC 容器大致有两种: 在应用程序中创建. 在 WEB ...

  7. SpringMVC(一) 基础知识+入门案例

    SpringMVC基础知识 1.什么是Springmvc 2.springmvc 框架的原理(必须掌握) 前端控制器.处理器映射器.处理器适配器.视图解析器 3.SpringMVC 入门程序 目的:对 ...

  8. HttpResponseCache的使用缓存cache

    为什么要用cache? 我们可以通过传递类似上次更新时间这样的参数来制定查询某些数据.同样,在下载图片的时候,server那边最好能够减少图片的大小,而不是让我们下载完整大小的图片. 之前我们在软件开 ...

  9. Dell 笔记本触摸板网页双指滑动黑屏

    # 问题如题 # 解决方法: -- 在网上搜了解决方法,最靠谱的一个是说,开机进BIOS,然后什么都不修改退出,重启就能解决(但是我采用这种方法并没有解决) -- 我自己的解决方法:设备管理器里面卸载 ...

  10. sed 处理一行,替换 删除

    sed option 'action' filename (文件可多个) option: -i 直接在原文件中修改! -n 安静模式,默认情况所有数据都会被列出,但-n只有经过动作处理的那一行才被列出 ...