吴裕雄 python 机器学习——ElasticNet回归
import numpy as np
import matplotlib.pyplot as plt from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
from sklearn import datasets, linear_model
from sklearn.model_selection import train_test_split def load_data():
diabetes = datasets.load_diabetes()
return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) #ElasticNet回归
def test_ElasticNet(*data):
X_train,X_test,y_train,y_test=data
regr = linear_model.ElasticNet()
regr.fit(X_train, y_train)
print('Coefficients:%s, intercept %.2f'%(regr.coef_,regr.intercept_))
print("Residual sum of squares: %.2f"% np.mean((regr.predict(X_test) - y_test) ** 2))
print('Score: %.2f' % regr.score(X_test, y_test)) # 产生用于回归问题的数据集
X_train,X_test,y_train,y_test=load_data()
# 调用 test_ElasticNet
test_ElasticNet(X_train,X_test,y_train,y_test) def test_ElasticNet_alpha_rho(*data):
X_train,X_test,y_train,y_test=data
alphas=np.logspace(-2,2)
rhos=np.linspace(0.01,1)
scores=[]
for alpha in alphas:
for rho in rhos:
regr = linear_model.ElasticNet(alpha=alpha,l1_ratio=rho)
regr.fit(X_train, y_train)
scores.append(regr.score(X_test, y_test))
## 绘图
alphas, rhos = np.meshgrid(alphas, rhos)
scores=np.array(scores).reshape(alphas.shape)
fig=plt.figure()
ax=Axes3D(fig)
surf = ax.plot_surface(alphas, rhos, scores, rstride=1, cstride=1, cmap=cm.jet,linewidth=0, antialiased=False)
fig.colorbar(surf, shrink=0.5, aspect=5)
ax.set_xlabel(r"$\alpha$")
ax.set_ylabel(r"$\rho$")
ax.set_zlabel("score")
ax.set_title("ElasticNet")
plt.show() # 调用 test_ElasticNet_alpha_rho
test_ElasticNet_alpha_rho(X_train,X_test,y_train,y_test)
吴裕雄 python 机器学习——ElasticNet回归的更多相关文章
- 吴裕雄 python 机器学习——逻辑回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄 python 机器学习——Lasso回归
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...
- 吴裕雄 python 机器学习——岭回归
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...
- 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——回归决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——模型选择回归问题性能度量
from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...
随机推荐
- 结对编程core_6
林静雯PB16060913 李鑫PB16061107 对于这种结对的工作,由于有过电子设计实践的基础,大概知道建一个工程需要做的事,有点经验还是有帮助的. 一.问题要求: 1·主要功能是随机产生有效的 ...
- 第一次使用mybatis
程序使用mybatis的步骤: 1.配置mybatis 涉及到的配置文件有conf.xml和与实体类对应的映射配置文件 (1) conf.xml:配置数据库信息和需要加载的映射文件 <confi ...
- 【SQL实践】其他常用SQL汇总
[SQL实践]其他常用SQL汇总 1.联表更新 update students stu inner join course on course.STUDENT_ID=stu.id set stu.na ...
- Java Socket NIO
服务端: public class NIOServer { private static final String HOST = "localhost"; private stat ...
- 【CentOS】PostgreSQL安装与设定
本教程适合Centos6.7或者RedHat. PostgreSQL安装 1.Postgresql安装包确认 yum list postgresql* postgresql-server.x86_64 ...
- python解决四舍五入问题
小数问题是计算机编程中大部分语言都会遇到的问题,尤其是在内容中涉及到评分.金额计算等等,本人一般在解决需求中固定小数位的数字计算时,都会先将其放大整10的倍数至整数,然后计算.存储,只有在显示的时候再 ...
- logback.xml例子
我项目中一直使用这样的模板,留档,并纪念. <?xml version="1.0" encoding="UTF-8"?> <configura ...
- python中Multiprocessing
import multiprocessing as mp #该函数不能有返回值,如果需要则应该将值放在queue中 def job(a,b): print('aaaa') if __name__ == ...
- Ubuntu16.04安装Python3.6 和pip(python3 各版本切换)
安装: sudo add-apt-repository ppa:jonathonf/python-3.6 sudo apt-get update sudo apt-get install python ...
- [练习-1] android studio 从Activity 进入 Fragment
从activity 进入到 fragment,使用系统自带的ListFragment 1,新建empty activity 2,新建Fragment(List) 3,activity_main.xml ...