PAT Advanced 1013 Battle Over Cities (25) [图的遍历,统计连通分量的个数,DFS,BFS,并查集]
题目
It is vitally important to have all the cities connected by highways in a war. If a city is occupied by the enemy, all the highways from/toward that city are closed. We must know immediately if we need to repair any other highways to keep the rest of the cities connected. Given the map of cities which have all the remaining highways marked, you are supposed to tell the number of highways need to be repaired, quickly.
For example, if we have 3 cities and 2 highways connecting city1-city2 and city1-city3. Then if city1 is occupied by the enemy, we must have 1 highway repaired, that is the highway city2-city3.
Input
Each input file contains one test case. Each case starts with a line containing 3 numbers N (<1000), M and K, which are the total number of cities, the number of remaining highways, and the number of cities to be checked, respectively. Then M lines follow, each describes a highway by 2 integers, which are the numbers of the cities the highway connects. The cities are numbered from 1 to N. Finally there is a line containing K numbers, which represent the cities we concern.
Output
For each of the K cities, output in a line the number of highways need to be repaired if that city is lost.
Sample Input
3 2 3
1 2
1 3
1 2 3
Sample Output
100
题目分析
已知城市数N,现有公路数M,现有公路信息,测试样例数K,求若某一城市被敌军占领后,需要修建几条公路可以重新连接剩余城市
题目翻译:已知图中顶点数和边,求删除某一顶点后,有多少个连通分量cnt,需cnt-1条边将这些连通分量连接
解题思路
保存图中边信息
- 邻接矩阵
- 邻接表
求连通分量数量
- 深度优先遍历DFS
- 广度优先遍历BFS
- 并查集
Code
Code 01(邻接矩阵 DFS)
#include <iostream>
using namespace std;
const int maxn=1010;
int n,g[maxn][maxn],vis[maxn];
void dfs(int c) {
vis[c]=true;
for(int i=1; i<=n; i++) {
if(g[c][i]!=0&&vis[i]==false) {
dfs(i);
}
}
}
int dfs_travel(int c) {
int ans=0;
vis[c]=true;
for(int i=1; i<=n; i++) {
if(vis[i]==false) {
dfs(i);
ans++;
}
}
return ans-1;
}
int main(int argc,char * argv[]) {
int m,k,a,b,c;
scanf("%d %d %d",&n,&m,&k);
for(int i=0; i<m; i++) {
scanf("%d %d",&a,&b);
g[a][b]=1;
g[b][a]=1;
}
for(int i=0; i<k; i++) {
scanf("%d",&c);
fill(vis,vis+maxn,0);
int ans=dfs_travel(c);
printf("%d\n",ans);
}
return 0;
}
Code 02(邻接矩阵 BFS)
#include <iostream>
#include <queue>
using namespace std;
const int maxn=1010;
int n,g[maxn][maxn],inq[maxn];
void bfs(int c) {
queue<int> q;
q.push(c);
inq[c]=true;
while(!q.empty()) {
int p = q.front();
q.pop();
for(int i=1; i<=n; i++) {
if(g[p][i]==1&&inq[i]==false) {
q.push(i);
inq[i]=true;
}
}
}
}
int bfs_travel(int c) {
int ans=0;
inq[c]=true;
for(int i=1; i<=n; i++) {
if(inq[i]==false) {
bfs(i);
ans++;
}
}
return ans-1;
}
int main(int argc,char * argv[]) {
int m,k,a,b,c;
scanf("%d %d %d",&n,&m,&k);
for(int i=0; i<m; i++) {
scanf("%d %d",&a,&b);
g[a][b]=1;
g[b][a]=1;
}
for(int i=0; i<k; i++) {
scanf("%d",&c);
fill(inq,inq+maxn,0);
int ans=bfs_travel(c);
printf("%d\n",ans);
}
return 0;
}
Code 03(邻接表 DFS)
#include <iostream>
#include <vector>
using namespace std;
const int maxn=1010;
int n,vis[maxn];
vector<int> g[maxn];
void dfs(int c) {
vis[c]=true;
for(int i=0; i<g[c].size(); i++) {
if(vis[g[c][i]]==false) {
dfs(g[c][i]);
}
}
}
int dfs_travel(int c) {
int ans=0;
vis[c]=true;
for(int i=1; i<=n; i++) {
if(vis[i]==false) {
dfs(i);
ans++;
}
}
return ans-1;
}
int main(int argc,char * argv[]) {
int m,k,a,b,c;
scanf("%d %d %d",&n,&m,&k);
for(int i=0; i<m; i++) {
scanf("%d %d",&a,&b);
g[a].push_back(b);
g[b].push_back(a);
}
for(int i=0; i<k; i++) {
scanf("%d",&c);
fill(vis,vis+maxn,0);
int ans=dfs_travel(c);
printf("%d\n",ans);
}
return 0;
}
Code 04(邻接表 BFS)
#include <iostream>
#include <queue>
using namespace std;
const int maxn=1010;
int n,inq[maxn];
vector<int> g[maxn];
void bfs(int c) {
queue<int> q;
q.push(c);
inq[c]=true;
while(!q.empty()) {
int p = q.front();
q.pop();
for(int i=0; i<g[p].size(); i++) {
if(inq[g[p][i]]==false) {
q.push(g[p][i]);
inq[g[p][i]]=true;
}
}
}
}
int bfs_travel(int c) {
int ans=0;
inq[c]=true;
for(int i=1; i<=n; i++) {
if(inq[i]==false) {
bfs(i);
ans++;
}
}
return ans-1;
}
int main(int argc,char * argv[]) {
int m,k,a,b,c;
scanf("%d %d %d",&n,&m,&k);
for(int i=0; i<m; i++) {
scanf("%d %d",&a,&b);
g[a].push_back(b);
g[b].push_back(a);
}
for(int i=0; i<k; i++) {
scanf("%d",&c);
fill(inq,inq+maxn,0);
int ans=bfs_travel(c);
printf("%d\n",ans);
}
return 0;
}
Code 05(邻接表 并查集)
#include <iostream>
#include <vector>
#include <set>
using namespace std;
const int maxn=1010;
int n,father[maxn];
vector<int> g[maxn];
/* 并查集 father[n]初始化*/
void initial() {
for(int i=1; i<=n; i++)father[i]=i;
}
/* 并查集 查+路径压缩*/
int find_root(int x) {
int a = x;
while(x!=father[x]) {
x=father[x];
}
// 路径压缩
while(a!=father[a]) {
int temp = a;
a=father[a];
father[temp]=x;
}
return x;
}
/* 并查集 并 */
void Union(int a, int b) {
int fa = find_root(a);
int fb = find_root(b);
if(fa<fb)father[fa]=fb;
else father[fb]=fa;
}
int main(int argc,char * argv[]) {
int m,k,a,b,c;
scanf("%d %d %d",&n,&m,&k);
for(int i=0; i<m; i++) {
scanf("%d %d",&a,&b);
g[a].push_back(b);
g[b].push_back(a);
}
for(int i=0; i<k; i++) {
scanf("%d",&c);
initial();
for(int j=1; j<=n; j++) { //c关联的边除外的所有边进行并查集操作
if(j==c)continue;
for(int e=0; e<g[j].size(); e++) {
if(g[j][e]==c)continue;
Union(j,g[j][e]);
}
}
//
set<int> ans;
for(int j=1; j<=n; j++) { //找到每个连通分量的根节点(唯一标识一个连通分量),加入set集合(保证唯一)
if(j==c)continue;
int f = find_root(j);
ans.insert(f);
}
printf("%d\n",ans.size()-1); //连通分量数-1即为需要建公路数
}
return 0;
}
PAT Advanced 1013 Battle Over Cities (25) [图的遍历,统计连通分量的个数,DFS,BFS,并查集]的更多相关文章
- PAT 甲级 1013 Battle Over Cities (25 分)(图的遍历,统计强连通分量个数,bfs,一遍就ac啦)
1013 Battle Over Cities (25 分) It is vitally important to have all the cities connected by highway ...
- PAT A 1013. Battle Over Cities (25)【并查集】
https://www.patest.cn/contests/pat-a-practise/1013 思路:并查集合并 #include<set> #include<map> ...
- PAT 解题报告 1013. Battle Over Cities (25)
1013. Battle Over Cities (25) t is vitally important to have all the cities connected by highways in ...
- 图论 - PAT甲级 1013 Battle Over Cities C++
PAT甲级 1013 Battle Over Cities C++ It is vitally important to have all the cities connected by highwa ...
- 1013 Battle Over Cities (25分) DFS | 并查集
1013 Battle Over Cities (25分) It is vitally important to have all the cities connected by highways ...
- PAT甲级1013. Battle Over Cities
PAT甲级1013. Battle Over Cities 题意: 将所有城市连接起来的公路在战争中是非常重要的.如果一个城市被敌人占领,所有从这个城市的高速公路都是关闭的.我们必须立即知道,如果我们 ...
- 1013 Battle Over Cities (25分) 图的连通分量+DFS
题目 It is vitally important to have all the cities connected by highways in a war. If a city is occup ...
- 1013 Battle Over Cities (25 分)
It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...
- 1013. Battle Over Cities (25)
题目如下: It is vitally important to have all the cities connected by highways in a war. If a city is oc ...
随机推荐
- CSP-J/S2019试题选做
S D1T2 括号树 设\(f[u]\)表示根到\(u\)的路径上有多少子串是合法括号串.(即题目里的\(k_u\),此变量名缺乏个性,故换之) 从根向每个节点dfs,容易求出\(c[u]\):表示从 ...
- 蓝桥杯 2n皇后问题
题意: 问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行.同一列或同一条对角线上,任意的两个白皇后都不在同一行.同一 ...
- <强化学习>基于采样迭代优化agent
前面介绍了三种采样求均值的算法 ——MC ——TD ——TD(lamda) 下面我们基于这几种方法来 迭代优化agent 传统的强化学习算法 || ν ν 已经知道完整MDP——使用价值函数V(s) ...
- eshop4-tomcat 安装
1. 下载tomcat 7 2. 解压缩 注意:是否使用sudo 权限执行请根据具体环境来决定 3. sudo vim /etc/profile 在最下方增加 export CATALINA_HOME ...
- 吴裕雄--天生自然java开发常用类库学习笔记:Math与Random类
public class MathDemo01{ public static void main(String args[]){ // Math类中的方法都是静态方法,直接使用“类.方法名称()”的形 ...
- H5页面单点登录跳回首页 http url参数转义
在往首页跳的时候因为是单点登录进来的,url后面会带有参数,然后存入会话,所以我要拿到原本存入会话的参数放入url后面 但是返回的时候页面报错了 http://localhost:18086/h5ap ...
- dedecms 栏目目录用首字母生成的方法
修改dede/catalog.add.php文件 85行 $toptypedir = GetPinyin(stripslashes($toptypename)); 修改为 $toptypedir = ...
- LeetCode题解汇总(包括剑指Offer和程序员面试金典,持续更新)
LeetCode题解汇总(持续更新,并将逐步迁移到本博客列表中) LeetCode题解分类汇总(包括剑指Offer和程序员面试金典) 剑指Offer 序号 题目 难度 03 数组中重复的数字 简单 0 ...
- Golang的类型转换实战案例
Golang的类型转换实战案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.数据类型概述 基础数据类型概述,博主推荐阅读: 布尔型: https://www.cnblogs. ...
- java 三羊献瑞
三羊献瑞 观察下面的加法算式: 其中,相同的汉字代表相同的数字,不同的汉字代表不同的数字. 请你填写"三羊献瑞"所代表的4位数字(答案唯一),不要填写任何多余内容. public ...