题目

It is vitally important to have all the cities connected by highways in a war. If a city is occupied by the enemy, all the highways from/toward that city are closed. We must know immediately if we need to repair any other highways to keep the rest of the cities connected. Given the map of cities which have all the remaining highways marked, you are supposed to tell the number of highways need to be repaired, quickly.

For example, if we have 3 cities and 2 highways connecting city1-city2 and city1-city3. Then if city1 is occupied by the enemy, we must have 1 highway repaired, that is the highway city2-city3.

Input

Each input file contains one test case. Each case starts with a line containing 3 numbers N (<1000), M and K, which are the total number of cities, the number of remaining highways, and the number of cities to be checked, respectively. Then M lines follow, each describes a highway by 2 integers, which are the numbers of the cities the highway connects. The cities are numbered from 1 to N. Finally there is a line containing K numbers, which represent the cities we concern.

Output

For each of the K cities, output in a line the number of highways need to be repaired if that city is lost.

Sample Input

3 2 3

1 2

1 3

1 2 3

Sample Output

100

题目分析

已知城市数N,现有公路数M,现有公路信息,测试样例数K,求若某一城市被敌军占领后,需要修建几条公路可以重新连接剩余城市

题目翻译:已知图中顶点数和边,求删除某一顶点后,有多少个连通分量cnt,需cnt-1条边将这些连通分量连接

解题思路

保存图中边信息

  • 邻接矩阵
  • 邻接表

求连通分量数量

  • 深度优先遍历DFS
  • 广度优先遍历BFS
  • 并查集

Code

Code 01(邻接矩阵 DFS)

#include <iostream>
using namespace std;
const int maxn=1010;
int n,g[maxn][maxn],vis[maxn];
void dfs(int c) {
vis[c]=true;
for(int i=1; i<=n; i++) {
if(g[c][i]!=0&&vis[i]==false) {
dfs(i);
}
}
}
int dfs_travel(int c) {
int ans=0;
vis[c]=true;
for(int i=1; i<=n; i++) {
if(vis[i]==false) {
dfs(i);
ans++;
}
}
return ans-1;
}
int main(int argc,char * argv[]) {
int m,k,a,b,c;
scanf("%d %d %d",&n,&m,&k);
for(int i=0; i<m; i++) {
scanf("%d %d",&a,&b);
g[a][b]=1;
g[b][a]=1;
}
for(int i=0; i<k; i++) {
scanf("%d",&c);
fill(vis,vis+maxn,0);
int ans=dfs_travel(c);
printf("%d\n",ans);
}
return 0;
}

Code 02(邻接矩阵 BFS)

#include <iostream>
#include <queue>
using namespace std;
const int maxn=1010;
int n,g[maxn][maxn],inq[maxn];
void bfs(int c) {
queue<int> q;
q.push(c);
inq[c]=true;
while(!q.empty()) {
int p = q.front();
q.pop();
for(int i=1; i<=n; i++) {
if(g[p][i]==1&&inq[i]==false) {
q.push(i);
inq[i]=true;
}
}
}
}
int bfs_travel(int c) {
int ans=0;
inq[c]=true;
for(int i=1; i<=n; i++) {
if(inq[i]==false) {
bfs(i);
ans++;
}
}
return ans-1;
}
int main(int argc,char * argv[]) {
int m,k,a,b,c;
scanf("%d %d %d",&n,&m,&k);
for(int i=0; i<m; i++) {
scanf("%d %d",&a,&b);
g[a][b]=1;
g[b][a]=1;
}
for(int i=0; i<k; i++) {
scanf("%d",&c);
fill(inq,inq+maxn,0);
int ans=bfs_travel(c);
printf("%d\n",ans);
}
return 0;
}

Code 03(邻接表 DFS)

#include <iostream>
#include <vector>
using namespace std;
const int maxn=1010;
int n,vis[maxn];
vector<int> g[maxn];
void dfs(int c) {
vis[c]=true;
for(int i=0; i<g[c].size(); i++) {
if(vis[g[c][i]]==false) {
dfs(g[c][i]);
}
}
}
int dfs_travel(int c) {
int ans=0;
vis[c]=true;
for(int i=1; i<=n; i++) {
if(vis[i]==false) {
dfs(i);
ans++;
}
}
return ans-1;
}
int main(int argc,char * argv[]) {
int m,k,a,b,c;
scanf("%d %d %d",&n,&m,&k);
for(int i=0; i<m; i++) {
scanf("%d %d",&a,&b);
g[a].push_back(b);
g[b].push_back(a);
}
for(int i=0; i<k; i++) {
scanf("%d",&c);
fill(vis,vis+maxn,0);
int ans=dfs_travel(c);
printf("%d\n",ans);
}
return 0;
}

Code 04(邻接表 BFS)

#include <iostream>
#include <queue>
using namespace std;
const int maxn=1010;
int n,inq[maxn];
vector<int> g[maxn];
void bfs(int c) {
queue<int> q;
q.push(c);
inq[c]=true;
while(!q.empty()) {
int p = q.front();
q.pop();
for(int i=0; i<g[p].size(); i++) {
if(inq[g[p][i]]==false) {
q.push(g[p][i]);
inq[g[p][i]]=true;
}
}
}
}
int bfs_travel(int c) {
int ans=0;
inq[c]=true;
for(int i=1; i<=n; i++) {
if(inq[i]==false) {
bfs(i);
ans++;
}
}
return ans-1;
}
int main(int argc,char * argv[]) {
int m,k,a,b,c;
scanf("%d %d %d",&n,&m,&k);
for(int i=0; i<m; i++) {
scanf("%d %d",&a,&b);
g[a].push_back(b);
g[b].push_back(a);
}
for(int i=0; i<k; i++) {
scanf("%d",&c);
fill(inq,inq+maxn,0);
int ans=bfs_travel(c);
printf("%d\n",ans);
}
return 0;
}

Code 05(邻接表 并查集)

#include <iostream>
#include <vector>
#include <set>
using namespace std;
const int maxn=1010;
int n,father[maxn];
vector<int> g[maxn];
/* 并查集 father[n]初始化*/
void initial() {
for(int i=1; i<=n; i++)father[i]=i;
}
/* 并查集 查+路径压缩*/
int find_root(int x) {
int a = x;
while(x!=father[x]) {
x=father[x];
}
// 路径压缩
while(a!=father[a]) {
int temp = a;
a=father[a];
father[temp]=x;
}
return x;
}
/* 并查集 并 */
void Union(int a, int b) {
int fa = find_root(a);
int fb = find_root(b);
if(fa<fb)father[fa]=fb;
else father[fb]=fa;
}
int main(int argc,char * argv[]) {
int m,k,a,b,c;
scanf("%d %d %d",&n,&m,&k);
for(int i=0; i<m; i++) {
scanf("%d %d",&a,&b);
g[a].push_back(b);
g[b].push_back(a);
}
for(int i=0; i<k; i++) {
scanf("%d",&c);
initial();
for(int j=1; j<=n; j++) { //c关联的边除外的所有边进行并查集操作
if(j==c)continue;
for(int e=0; e<g[j].size(); e++) {
if(g[j][e]==c)continue;
Union(j,g[j][e]);
}
}
//
set<int> ans;
for(int j=1; j<=n; j++) { //找到每个连通分量的根节点(唯一标识一个连通分量),加入set集合(保证唯一)
if(j==c)continue;
int f = find_root(j);
ans.insert(f);
}
printf("%d\n",ans.size()-1); //连通分量数-1即为需要建公路数
}
return 0;
}

PAT Advanced 1013 Battle Over Cities (25) [图的遍历,统计连通分量的个数,DFS,BFS,并查集]的更多相关文章

  1. PAT 甲级 1013 Battle Over Cities (25 分)(图的遍历,统计强连通分量个数,bfs,一遍就ac啦)

    1013 Battle Over Cities (25 分)   It is vitally important to have all the cities connected by highway ...

  2. PAT A 1013. Battle Over Cities (25)【并查集】

    https://www.patest.cn/contests/pat-a-practise/1013 思路:并查集合并 #include<set> #include<map> ...

  3. PAT 解题报告 1013. Battle Over Cities (25)

    1013. Battle Over Cities (25) t is vitally important to have all the cities connected by highways in ...

  4. 图论 - PAT甲级 1013 Battle Over Cities C++

    PAT甲级 1013 Battle Over Cities C++ It is vitally important to have all the cities connected by highwa ...

  5. 1013 Battle Over Cities (25分) DFS | 并查集

    1013 Battle Over Cities (25分)   It is vitally important to have all the cities connected by highways ...

  6. PAT甲级1013. Battle Over Cities

    PAT甲级1013. Battle Over Cities 题意: 将所有城市连接起来的公路在战争中是非常重要的.如果一个城市被敌人占领,所有从这个城市的高速公路都是关闭的.我们必须立即知道,如果我们 ...

  7. 1013 Battle Over Cities (25分) 图的连通分量+DFS

    题目 It is vitally important to have all the cities connected by highways in a war. If a city is occup ...

  8. 1013 Battle Over Cities (25 分)

    It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...

  9. 1013. Battle Over Cities (25)

    题目如下: It is vitally important to have all the cities connected by highways in a war. If a city is oc ...

随机推荐

  1. SciPy 信号处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  2. 蓝桥杯 2n皇后问题

    题意: 问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行.同一列或同一条对角线上,任意的两个白皇后都不在同一行.同一 ...

  3. 5G/NR OTA (Over The Air) 测试详解

    原文链接:http://www.sharetechnote.com/html/5G/5G_OTA.html 1 什么是OTA (Over The Air) OTA代表Over The Air.为了使用 ...

  4. Java 用户输入

    章节 Java 基础 Java 简介 Java 环境搭建 Java 基本语法 Java 注释 Java 变量 Java 数据类型 Java 字符串 Java 类型转换 Java 运算符 Java 字符 ...

  5. F. Fairness 分硬币最大差值最小

    F. Fairness time limit per test 2.0 s memory limit per test 64 MB input standard input output standa ...

  6. Window Server 2019 配置篇(6)- 利用组策略实现域内自动安装软件

    上次我们建立了WSUS实现了更新管理,那么现在我们需要的是让集群内的客户机(之后会建立在hyper-v集群上)和服务器都能装上三个软件 1. Microsoft Team 2. Notepad++ 3 ...

  7. Linux 安装gcc g++

    Linux版本: cat /proc/version Linux version 3.10.0-693.11.6.el7.x86_64 (mockbuild@x86-041.build.eng.bos ...

  8. [Machine Learning][BP]The Vectorized Back Propagation Algorithm

    Reference: https://www.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf I spent nearly one hour ...

  9. 15.swoole学习笔记--异步写入文件

    <?php //异步写入文件 $content="hello world"; swoole_async_writefile('2.txt',$content,function ...

  10. 十一、SAP文本变量,并设置长度

    一.在SAP中,一个中文占用2个文本长度,详见代码: 二.效果如下