国庆中秋双节,就不写太长的文章了。

补充和复习一下以前没写的素数区间筛法算法吧

部分证明过程来自OI wiki

素数筛法

如果我们想要知道小于等于 \(n\) 有多少个素数呢?

一个自然的想法是我们对于小于等于 \(n\) 的每个数进行一次判定。这种暴力的做法显然不能达到最优复杂度,考虑如何优化。

考虑这样一件事情:如果 \(x\) 是合数,那么 \(x\) 的倍数也一定是合数。利用这个结论,我们可以避免很多次不必要的检测。

如果我们从小到大考虑每个数,然后同时把当前这个数的所有(比自己大的)倍数记为合数,那么运行结束的时候没有被标记的数就是素数了。

int Eratosthenes(int n) {
int p = 0;
for (int i = 0; i <= n; ++i) is_prime[i] = 1;
is_prime[0] = is_prime[1] = 0;
for (int i = 2; i <= n; ++i) {
if (is_prime[i]) {
prime[p++] = i; // prime[p]是i,后置自增运算代表当前素数数量
// 因为从 2 到 i - 1 的倍数我们之前筛过了,这里直接从 i
// 的倍数开始,提高了运行速度
for (int j = i * i; j <= n;j += i) is_prime[j] = 0;
}
return p;
}

以上为 Eratosthenes 筛法 (埃拉托斯特尼筛法),时间复杂度是 \(O(n\log\log n)\) 。

以上做法仍有优化空间,我们发现这里面似乎会对某些数标记了很多次其为合数。有没有什么办法省掉无意义的步骤呢?

答案当然是:有!

如果能让每个合数都只被标记一次,那么时间复杂度就可以降到 \(O(n)\) 了

void init() {
phi[1] = 1;
for (int i = 2; i < MAXN; ++i) {
if (!vis[i]) {
phi[i] = i - 1;
pri[cnt++] = i;
}
for (int j = 0; j < cnt; ++j) {
if (1ll * i * pri[j] >= MAXN) break;
vis[i * pri[j]] = 1;
if (i % pri[j]) {
phi[i * pri[j]] = phi[i] * (pri[j] - 1);
}
else {
// i % pri[j] == 0
// 换言之,i 之前被 pri[j] 筛过了
// 由于 pri 里面质数是从小到大的,所以 i 乘上其他的质数的结果一定也是
// pri[j] 的倍数 它们都被筛过了,就不需要再筛了,所以这里直接 break
// 掉就好了
phi[i * pri[j]] = phi[i] * pri[j];
break;
}
}
}
}

上面代码中的 \(phi\) 数组,会在下面提到。

上面的这种 线性筛法 也称为 Euler 筛法 (欧拉筛法)。node: 注意到筛法求素数的同时也得到了每个数的最小质因子

筛法求欧拉函数

注意到在线性筛中,每一个合数都是被最小的质因子筛掉。比如设 \(p_1\) 是 \(n\) 的最小质因子, \(n' = \frac{n}{p_1}\) ,那么线性筛的过程中 \(n\) 通过 \(n' \times p_1\) 筛掉。

观察线性筛的过程,我们还需要处理两个部分,下面对 \(n' \bmod p_1\) 分情况讨论。

如果 \(n' \bmod p_1 = 0\) ,那么 \(n'\) 包含了 \(n\) 的所有质因子。

\[\begin{aligned}
\varphi(n) & = n \times \prod_{i = 1}^s{\frac{p_i - 1}{p_i}} \\\\
& = p_1 \times n' \times \prod_{i = 1}^s{\frac{p_i - 1}{p_i}} \\\\
& = p_1 \times \varphi(n')
\end{aligned}
\]

那如果 \(n' \bmod p_1 \neq 0\) 呢,这时 \(n'\) 和 \(p_1\) 是互质的,根据欧拉函数性质,我们有:

\[\begin{aligned}
\varphi(n) & = \varphi(p_1) \times \varphi(n') \\\\
& = (p_1 - 1) \times \varphi(n')
\end{aligned}
\]
void phi_table(int n, int* phi) {
for (int i = 2; i <= n; i++) phi[i] = 0;
phi[1] = 1;
for (int i = 2; i <= n; i++)
if (!phi[i])
for (int j = i; j <= n; j += i) {
if (!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i - 1);
}
}

筛法求莫比乌斯函数

线性筛

void pre() {
mu[1] = 1;
for (int i = 2; i <= 1e7; ++i) {
if (!v[i]) mu[i] = -1, p[++tot] = i;
for (int j = 1; j <= tot && i <= 1e7 / p[j]; ++j) {
v[i * p[j]] = 1;
if (i % p[j] == 0) {
mu[i * p[j]] = 0;
break;
}
mu[i * p[j]] = -mu[i];
}
}

筛法求约数个数

用 \(d_i\) 表示 \(i\) 的约数个数, \(num_i\) 表示 \(i\) 的最小质因子出现次数。

约数个数定理

定理:若 \(n=\prod_{i=1}^mp_i^{c_i}\) 则 \(d_i=\prod_{i=1}^mc_i+1\) .

证明:我们知道 \(p_i^{c_i}\) 的约数有 \(p_i^0,p_i^1,\dots ,p_i^{c_i}\) 共 \(c_i+1\) 个,根据乘法原理, \(n\) 的约数个数就是 \(\prod_{i=1}^mc_i+1\) .

实现

因为 \(d_i\) 是积性函数,所以可以使用线性筛。

void pre() {
d[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!v[i]) v[i] = 1, p[++tot] = i, d[i] = 2, num[i] = 1;
for (int j = 1; j <= tot && i <= n / p[j]; ++j) {
v[p[j] * i] = 1;
if (i % p[j] == 0) {
num[i * p[j]] = num[i] + 1;
d[i * p[j]] = d[i] / num[i * p[j]] * (num[i * p[j]] + 1);
break;
}
else {
num[i * p[j]] = 1;
d[i * p[j]] = d[i] * 2;
}
}
}
}

筛法求约数和

\(f_i\) 表示 \(i\) 的约数和, \(g_i\) 表示 \(i\) 的最小质因子的 \(p+p^1+p^2+\dots p^k\) .

void pre() {
g[1] = f[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!v[i]) v[i] = 1, p[++tot] = i, g[i] = i + 1, f[i] = i + 1;
for (int j = 1; j <= tot && i <= n / p[j]; ++j) {
v[p[j] * i] = 1;
if (i % p[j] == 0) {
g[i * p[j]] = g[i] * p[j] + 1;
f[i * p[j]] = f[i] / g[i] * g[i * p[j]];
break;
}
else {
f[i * p[j]] = f[i] * f[p[j]];
g[i * p[j]] = 1 + p[j];
}
}
}
for (int i = 1; i <= n; ++i) f[i] = (f[i - 1] + f[i]) % Mod;
}

区间筛法

给定整数a和b,请问区间\([a,b)\)内有多少个素数?\((a<b≤10^{12},b-a≤10^6)\)

思路:b以内的合数的最小质因数一定不超过\(√b\)。如果有\(√b\)以内的素数表的话,就可以把埃氏筛法运用在\([a,b)\)上了。也就是说,先分别做好\([2,√b)\)的表和\([a,b)\)的表,然后从\([2,√b)\)的表中筛得素数的同时,也将其倍数从\([a,b)\)的表中划去,最后剩下的就是\([a,b)\)内的素数了。

bool v1[Max_n1]; //数组大小为sqrt(b)
bool v2[Max_n2]; //数组大小为b-a ll Prime(ll a, ll b) {
for (ll i = 0; i * i < b; i++)v1[i] = true;
for (ll i = 0; i < b - a; i++)v2[i] = true; for (ll i = 2; i * i < b; i++) {
if (v1[i]) {
for (ll j = 2 * i; j * j < b; j += i)v1[j] = false; //筛[2,b)
for (ll j = max(2LL, (a + i - 1) / i) * i; j < b; j += i)v2[j - a] = false; //筛[a,b)
//2LL是2的长整数形式
//((a+i-1)/i)*i是符合>=a最小是i倍数的数
}
}
ll k = 0;
for (ll i = 0; i < b - a; i++) {
if (v2[i])k++;
}
return k;

其他线性函数

待补充

素数算法补充之"筛法"的更多相关文章

  1. 素数算法(Prime Num Algorithm)

    素数算法(Prime Num Algorithm) 数学是科学的皇后,而素数可以说是数学的最为核心的概念之一.围绕素数产生了很多伟大的故事,最为著名莫过于哥德巴赫猜想.素数定理和黎曼猜想(有趣的是,自 ...

  2. nyoj 24-素数距离问题 (素数算法)

    24-素数距离问题 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:21 submit:71 题目描述: 现在给出你一些数,要求你写出一个程序,输出这 ...

  3. USACO1.5Superprime Rid[附带关于素数算法时间测试]

    题目描述 农民约翰的母牛总是产生最好的肋骨.你能通过农民约翰和美国农业部标记在每根肋骨上的数字认出它们.农民约翰确定他卖给买方的是真正的质数肋骨,是因为从右边开始切下肋骨,每次还剩下的肋骨上的数字都组 ...

  4. 素数判断-----埃氏筛法&欧拉筛法

    埃氏筛法 /* |埃式筛法| |快速筛选素数| |15-7-26| */ #include <iostream> #include <cstdio> using namespa ...

  5. KNN分类算法补充

    KNN补充: 1.K值设定为多大? k太小,分类结果易受噪声点影响:k太大,近邻中又可能包含太多的其它类别的点. (对距离加权,可以降低k值设定的影响) k值通常是采用交叉检验来确定(以k=1为基准) ...

  6. poj 2689Prime Distance(区间素数)埃氏筛法

    这道题的L和R都很大,所以如果直接开一个1~R的数组明显会超时.但是R-L并不大,所以我们考虑把这个区间(L--R)移动到(1--(R-L+1))这个区间再开数组(就是把每个数减L再加1).接下来先用 ...

  7. 求素数的一个快速算法 Python 快速输出素数算法

    思想 以100以内为例. 生成一个全是True的101大小的数组 2开始,遇到2的倍数(4,6,8,10...)都赋值为False 因为这些数字都有因子 2 3开始,遇到3的倍数(6,9,12...) ...

  8. 素数个数统计——Eratosthenes筛法 [LeetCode 204]

    1- 问题描述 Count the number of prime numbers less than a non-negative number, n 2- 算法思想 给出要筛数值的范围 $n$,找 ...

  9. 【Miller-Rabin随机判素数算法】

    实用性介绍: #include<bits/stdc++.h> #define go(i,a,b) for(int i=a;i<=b;i++) #define T 5 #define ...

  10. Miller-Rabin素数检测算法

    遇到了一个题: Description: Goldbach's conjecture is one of the oldest and best-known unsolved problems in ...

随机推荐

  1. 提升开发技能:10个高级的JavaScript技巧

    前言 在这个快速发展的数字时代,JavaScript作为一种广泛应用的编程语言,其重要性愈发凸显.为了在竞争激烈的开发领域中保持竞争力,不断提升自己的技能是至关重要的.本文小编将您介绍10个高级的Ja ...

  2. 阿里云服务器docker系统 BUG

    阿里云服务器docker系统 BUG购买了阿里云新加坡区的轻量服务器,安装的是docker专用系统,故障现象:docker镜像下载后,docker网络不通,docker端口不通,网络一直不通,通过防火 ...

  3. 小程序引入外部icon图标

    一.使用阿里巴巴图标库引入字体图标 阿里巴巴图标库:https://www.iconfont.cn/manage/index 选择合适的图标 收藏,在收藏中查看 选择:自己的项目 选择:第二个{fon ...

  4. c++学习,和友元函数

    第一友元函数访问私有元素时不会显示,但是是可以调用的(我使用的是gcc10.3版本的)友元函数可以访问任何元素.就是语法你别写错了. 继承如果父类已经写了构造函数,子类一定要赋值给构造函数,要么父类就 ...

  5. [NOI online2022普及B] 数学游戏

    题目描述 Kri 喜欢玩数字游戏. 一天,他在草稿纸上写下了 \(t\) 对正整数 \((x,y)\),并对于每一对正整数计算出了 \(z=x\times y\times\gcd(x,y)\). 可是 ...

  6. YOLO: Real-Time Object Detection 遇到的问题

    YOLO: Real-Time Object Detection 官方介绍的方法安装好了yolo之后,然后使用命令: ./darknet detect cfg/yolov3.cfg yolov3.we ...

  7. Python 潮流周刊第 32 期(摘要)

    本周刊由 Python猫 出品,精心筛选国内外的 250+ 信息源,为你挑选最值得分享的文章.教程.开源项目.软件工具.播客和视频.热门话题等内容.愿景:帮助所有读者精进 Python 技术,并增长职 ...

  8. STM32CubeMX教程4 EXTI 按键外部中断

    1.准备材料 开发板(STM32F407G-DISC1) ST-LINK/V2驱动 STM32CubeMX软件(Version 6.10.0) keil µVision5 IDE(MDK-Arm) 2 ...

  9. Linux驱动开发笔记(六):用户层与内核层进行数据传递的原理和Demo

    前言   驱动作为桥梁,用户层调用预定义名称的系统函数与系统内核交互,而用户层与系统层不能直接进行数据传递,进行本篇主要就是理解清楚驱动如何让用户编程来实现与内核的数据交互传递.   温故知新 设备节 ...

  10. 在Linux Docker中部署RStudio Server,实现高效远程访问

    在Linux Docker中部署RStudio Server,实现高效远程访问     前言 RStudio Server 使你能够在 Linux 服务器上运行你所熟悉和喜爱的 RStudio IDE ...