Spark MLib 数据类型
1. MLlib
Apache Spark's scalable machine learning library, with APIs in Java, Scala and Python.
2. 数据类型
本地向量,标注点,本地矩阵,分布式矩阵
3. 本地向量 Local Vector
- 稠密向量 dense 一个double数组,例如 (1.0, 0.0, 0.0, 0.0, 3.0)
- 稀疏向量 sparse 两个并行的数组(indices和values),例如 (5, [0, 4], [1.0, 3.0]),其中5表示向量元素的个数,[0,4] 是indices,[1.0,3.0]是values
基类是Vector, org.apache.spark.mllib.linalg.vector引入
import org.apache.spark.mllib.linalg.{Vector, Vectors}
val dv: Vector = Vectors.dense(1.0, 0.0, 3.0) // 创建一个dense vector (1.0, 0.0, 3.0).
val sv1: Vector = Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0)) // 创建一个sparse vector (1.0, 0.0, 3.0).
val sv2: Vector = Vectors.sparse(3, Seq((0, 1.0), (2, 3.0))) // 等同于sv2
4. 标注点(Labeled Point)
用于有监督学习的训练样本称为标注点。
- 一个标注点就是一个本地向量(或稠密或稀疏),这个向量和一个标签或者响应相关联。
- 我们用一个
double
存储标签,这样我们就可以在回归和分类中使用标注点。 - 对于二分类,一个标签可能是0或者是1;对于多分类,一个标签可能代表从0开始的类别索引。
样本类是LabeledPoint, org.apache.spark.mllib.regression.LabeledPoint 引入。
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint val pos = LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0)) // a positive label and a dense feature vector.
val neg = LabeledPoint(0.0, Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0))) // a negative label and a sparse feature vector.
5. 本地矩阵(Local Matrix)
- 稠密矩阵 按列顺序存储,用一个数组,加上(列,行) 表示数组大小。
- 稀疏矩阵 非零条目值保存为压缩稀疏列 CSC(
Compressed Sparse Column
)格式,这种格式也是以列顺序存储
例: 9.0 0.0
( 0.0 8.0)
0.0 6.0
稠密矩阵可以表示为,[3, 2, (9.0 , 0.0, 0.0, 0.0, 8.0, 6.0) ] 其中3为
稀疏矩阵 ??不懂
基类是Matrix, 可以导入 org.apache.spark.mllib.linalg.Matrices
import org.apache.spark.mllib.linalg.{Matrix,Matrices} val dm: Matrix=Matrices.dense(3,2,Array(9.0,0.0,0.0,0.0,8.0,6.0) // dense Matrix
val sm: Matrix=Matrices.sparse(3,2,Array(0,1,3),Array(0,2,1),Array(9,8,6)) //sparse Matrix
6. 分布式矩阵 Distributed Matrix
一个分布式矩阵拥有long
类型的行和列索引,以及double
类型的值,分布式的存储在一个或多个RDD
中。
已经实现了3种分布式矩阵:
1) RowMatrix
- 是一个面向行的分布式矩阵,它没有有意义的行索引。行保存为一个
RDD
,每一行都是一个本地向量。 - 可以通过 org.apache.spark.mllib.linalg.distributed.RowMatrix 引入。
- 通过
RDD[Vector]
实例创建
2) IndexedRowMatrix
- 和RowMatrix类似,它拥有行索引,行索引可以用于识别行和进行
join
操作 - org.apache.spark.mllib.linalg.distributed.{IndexedRow, IndexedRowMatrix, RowMatrix}
- 可以通过
RDD[IndexedRow]
实例创建 IndexedRowMatrix
可以通过去掉它的行索引,转换成RowMatrix
3) CoordinateMatrix
- 一个分布式矩阵,它使用
COO
格式存储 (COO是啥) - 条目保存为一个
RDD
。每一个条目是一个(i: Long, j: Long, value: Double)
格式的元组,i
行索引,j
列索引,value
条目值。 - 应该仅仅在矩阵维度很大并且矩阵非常稀疏的情况下使用
- org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, MatrixEntry}
- 通过
RDD[MatrixEntry]
实例创建
4) BlockMatrix
- 每个块保存为一个RDD
与CoordinateMatrix类似,是一个((Int, Int), Matrix)
类型的元组,其中(Int, Int)
代表块的索引,Matrix
代表子矩阵。BlockMatrix
支持诸如add
和multiply
等方法。BlockMatrix
还有一个帮助方法validate
,用来判断一个BlockMatrix
是否正确的创建。- 调用
toBlockMatrix
从一个IndexedRowMatrix
或者CoordinateMatrix
创建一个BlockMatrix。 默认大小为 1024 * 1024
org.apache.spark.mllib.linalg.distributed.BlockMatrix
Spark MLib 数据类型的更多相关文章
- Spark MLib:梯度下降算法实现
声明:本文参考< 大数据:Spark mlib(三) GradientDescent梯度下降算法之Spark实现> 1. 什么是梯度下降? 梯度下降法(英语:Gradient descen ...
- Spark mlib的本地向量
Spark mlib的本地向量有两种: DenseVctor :稠密向量 其创建方式 Vector.dense(数据) SparseVector :稀疏向量 其创建方式有两种: 方法一:Vector. ...
- Spark MLib完整基础入门教程
Spark MLib 在Spark下进行机器学习,必然无法离开其提供的MLlib框架,所以接下来我们将以本框架为基础进行实际的讲解.首先我们需要了解其中最基本的结构类型,即转换器.估计器.评估器和流水 ...
- Spark MLib 基本统计汇总 2
4. 假设检验 基础回顾: 假设检验,用于判断一个结果是否在统计上是显著的.这个结果是否有机会发生. 显著性检验 原假设与备择假设 常把一个要检验的假设记作 H0,称为原假设(或零假设) (null ...
- Spark MLib 基本统计汇总 1
1. 概括统计 summary statistics MLlib支持RDD[Vector]列式的概括统计,它通过调用 Statistics 的 colStats方法实现. colStats返回一个 ...
- Spark PySpark数据类型的转换原理—Writable Converter
Spark目前支持三种开发语言:Scala.Java.Python,目前我们大量使用Python来开发Spark App(Spark 1.2开始支持使用Python开发Spark Streaming ...
- Spark MLlib数据类型
MLlib支持几种数据类型:本地向量(local vectors),和存储在一个简单机器中的矩阵(matrices),以及由一个或多个RDDs组成的分布式矩阵. 1,本地向量(Local Ve ...
- spark 机器学习基础 数据类型
spark的机器学习库,包含常见的学习算法和工具如分类.回归.聚类.协同过滤.降维等使用算法时都需要指定相应的数据集,下面为大家介绍常用的spark ml 数据类型.1.本地向量(Local Vect ...
- Spark的mlib中的稠密向量和稀疏向量
spark mlib中2种局部向量:denseVector(稠密向量)和sparseVector(稀疏向量) denseVector向量的生成方法:Vector.dense() sparseVecto ...
随机推荐
- charCode与keyCode的区别
在标准浏览器下获取键盘按键我们可以使用e.which,但是非标准下没有这个属性,所以大部分情况下用keyCode,但是这是存在兼容性问题的.我们来看下他两的区别: onkeydown: e.keyCo ...
- 微软职位内部推荐-Service Engineer II for Azure Cloud Network
微软近期Open的职位: Are you interested in helping to drive the direction of a product that defines the clou ...
- codevs http://www.codevs.cn/problem/?problemset_id=1 循环、递归、stl复习题
12.10高一练习题 1.要求: 这周回顾复习的内容是循环.递归.stl. 不要因为题目简单就放弃不做,现在就是练习基础. 2.练习题: (1)循环 题目解析与代码见随笔分类 NOI题库 htt ...
- c#:Reflector+Reflexil 修改编译后的dll/exe文件
不知道大家有没有这样的经历:现场实施时测试出一个bug,明明知道某个dll/exe文件只要修改一二行代码即可,但手头没有开发环境,紧急情况下,可以用reflector + reflexil 临时直接修 ...
- Alpha版本项目展示要求
Alpha版本展示的时间暂定为11月17日课上.如有变动,另行通知. 在Alpha阶段项目评审会上, 每个团队有12分钟展示时间,10分钟问答和机动时间,我们的展示也不需要PPT,大家把要展现的东西写 ...
- 支付宝Cookie高危漏洞引发的思考
背景:当时我在做公司的网站支付接入,在调试支付宝WAP支付时,发现一些匪夷所思的事情: 1.我想要切换账号时退到需要输入登录信息时,原账号并没有退出,我按一下后退键又回来了: 2.我关闭浏览器也没有退 ...
- 重建中国.NET生态系统
Neuzilla官方微信公众号:搜 架构师联盟 或 neuzilla 我是.NET铁杆粉丝,所以如果你要在评论里跟我撕逼.NET怎么怎么烂,Java.C++.PHP.JavaScript怎么怎么好,我 ...
- 用canvas画“哆啦A梦”时钟
前言:今天看完了Js书的canvas画布那张,好开心~又是心爱的canvas~欧耶~ 之前看到有人建议我画蓝胖子,对哦,我怎么把童年最喜欢的蓝胖子忘了,为了表达我对蓝胖子的歉意,所以今天画了会动的he ...
- iptables规则组成
一.四张表五条链 组成部分:四张表 + 5条链(Hook point) + 规则 四张表:filter nat mangle raw 五条链:PREROUTING INPUT FORWARD OUTP ...
- 手把手教你在Windows下搭建React Native Android开发环境
最近看到React Native好像好厉害的样子,好奇心驱使之下体验了一下并将在Window下搭建React Natvie Android环境的步骤记录下来,并有需要的朋友参考.(我都是参考官方文档的 ...