P2502 [HAOI2006]旅行 最小生成树
思路:枚举边集,最小生成树
提交:1次
题解:枚举最长边,添加较小边。
#include<cstdio>
#include<iostream>
#include<algorithm>
#define R register int
using namespace std;
#define ull unsigned long long
#define ll long long
#define pause (for(R i=1;i<=10000000000;++i))
#define In freopen("NOIPAK++.in","r",stdin)
#define Out freopen("out.out","w",stdout)
namespace Fread {
static char B[<<],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
if(ch==EOF) return EOF; do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=||ch>=);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
} using Fread::g; using Fread::gs; namespace Luitaryi {
const int N=,M=;
int n,m,s,t,up,dn;
double anss=1E+;
int fa[N];
struct edge { int u,v,w;
inline bool operator < (const edge& that) const{return w<that.w;}
}e[M];
inline int getf(int x) {return x==fa[x]?x:fa[x]=getf(fa[x]);}
inline void main() {
n=g(),m=g();
for(R i=;i<=m;++i) e[i].u=g(),e[i].v=g(),e[i].w=g();
sort(e+,e+m+); s=g(),t=g();
for(R i=;i<=m;++i) { R ans=;//枚举下界,最小的边
for(R j=;j<=n;++j) fa[j]=j;
for(R j=i;j<=m;++j) {//往上枚举,直到两点连通
R uf=getf(e[j].u),vf=getf(e[j].v);
fa[uf]=vf;
if(getf(s)==getf(t)) {ans=j; break;}
} if(i==&&ans==) return (void)printf("IMPOSSIBLE\n");
if(ans==) break; register double tmp=1.0*e[ans].w/e[i].w;
if(tmp<anss) anss=tmp,up=e[ans].w,dn=e[i].w;
} R tmp=__gcd(up,dn); if(tmp==dn) printf("%d\n",up/dn);
else printf("%d/%d\n",up/tmp,dn/tmp);
}
}
signed main() {
Luitaryi::main();
return ;
}
2019.07.20
P2502 [HAOI2006]旅行 最小生成树的更多相关文章
- luogu题解P2502[HAOI2006]旅行--最小生成树变式
题目链接 https://www.luogu.org/problemnew/show/P2502 分析 一个很\(naive\)的做法是从\(s\)到\(t\)双向BFS这当然会TLE 这时我就有个想 ...
- P2502 [HAOI2006]旅行
P2502 [HAOI2006]旅行有些问题光靠直觉是不靠谱的,必须有简单的证明,要么就考虑到所有情况.这个题我想的是要么见最小生成树,要么建最大生成树,哎,我sb了一种很简单的情况就能卡掉在最小生成 ...
- P2502 [HAOI2006]旅行——暴力和并查集的完美结合
P2502 [HAOI2006]旅行 一定要看清题目数据范围再决定用什么算法,我只看着是一个蓝题就想到了记录最短路径+最小生成树,但是我被绕进去了: 看到只有5000的边,我们完全可以枚举最小边和最大 ...
- 洛谷P2502[HAOI2006]旅行
题目: Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N个景点(编号为1,2,3,-,N),这些景点被M条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路.也许 ...
- luogu P2502 [HAOI2006]旅行
传送门 边数只有5000,可以考虑\(O(m^2)\)算法,即把所有边按边权升序排序,然后依次枚举每条边\(i\),从这条边开始依次加边,加到起点和终点在一个连通块为止.这个过程可以用并查集维护.那么 ...
- P2502 [HAOI2006]旅行 并查集
题目描述 Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N个景点(编号为1,2,3,…,N),这些景点被M条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路.也 ...
- BZOJ 1050 [HAOI2006]旅行comf
1050: [HAOI2006]旅行comf Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1889 Solved: 976[Submit][Sta ...
- 1050: [HAOI2006]旅行comf
1050: [HAOI2006]旅行comf Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1495 Solved: 737[Submit][Sta ...
- BZOJ 1050: [HAOI2006]旅行comf( 并查集 )
将edge按权值排序 , O( m² ) 枚举边 , 利用并查集维护连通信息. ------------------------------------------------------------ ...
随机推荐
- 记录一次hadoop2.8.4版本RM接入zk ha问题
背景: 公司将线上hadoop RM接入ZK 实现高可用 但ZK Znode 默认存储1M,当存储数据量大时候可能导致线上业务的崩溃 处理方案如下: 1,修改ZK配置 增加默认存储上限 2,修改RM数 ...
- 对称加密、非对称加密、数字签名、数字证书、SSL是什么
非对称密钥加解密 对于一份数据,通过一种算法,基于传入的密钥(一串由数字或字符组成的字符串,也称key),将明文数据转换成了不可阅读的密文,这就是“加密”,同样的,密文到达目的地后,需要再以相应的算法 ...
- php常用扩展有哪些
bcmath(精确数值处理) bz2 calendar Core ctype curl date dom ereg exif fileinfo filter ftp gettext hash icon ...
- 20190805-Python基础 第二章 列表和元组(2)列表
1. list函数,用于将字符串转换为列表 2. 基本的列表操作 修改列表 - 给元素赋值,使用索引表示法给特定的元素赋值,如x[1] = 2 删除元素 - 使用del语句即可 name1 = ['a ...
- Python--类的调用
类的调用 实例化 class Luffy: school = 'luffy' def __init__(self,name,age): self.Name = name self.Age = age ...
- Python学习3——列表和元组
一.通用序列操作——索引.切片.相加.相乘.成员资格检查 1.索引,正序从0开始为第一个元素,逆序从-1开始,-1为最后一个元素 >>> greeting[0] 'h' >&g ...
- 5.Linux常用排查命令
可以使用一下命令查使用内存最多的10个线程 ps aux | sort -k4nr | head -n 10 可以使用一下命令查使用CPU最多的10个线程 ps aux | sor ...
- 并不对劲的CSP-S2019
day1 对题的第一印象: t1:颇有"小凯的疑惑"之风(赛后发现确实如此,因为最好写的正解也可以直接输出) t2:log方会被卡吧?好像倍增一个log?(赛后发现有很好写的线性做 ...
- hdu 2609 字符串最小表示法 虽然不是很懂 还是先贴上来吧。/,。/
还需要再消化一下这个算法.. 今天没有时间了,, 六级过了 就有大把时间 快活啊!#include<iostream> #include<cstdio> #include< ...
- sketch最强切图工具Sketch Measure
https://www.inpandora.com/sketch-measure.html https://www.jianshu.com/p/c11ae88e6b1d