图  8.1

import matplotlib.pyplot as plt
import numpy as np plt.axes([0.05, 0.7, 0.3, 0.3], frameon=True, facecolor="y", aspect="equal")
plt.plot(np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle="--") plt.axes([0.3, 0.4, 0.3, 0.3], frameon=True, facecolor="y", aspect="equal")
plt.plot(2+np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle="-") plt.axes([0.55, 0.1, 0.3, 0.3], frameon=True, facecolor="y", aspect="equal")
plt.plot(4+np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle=":") plt.show()

================================================

图  8.2

 

import matplotlib.pyplot as plt
import numpy as np plt.axes([0.05, 0.7, 0.3, 0.3], frameon=True, facecolor="y", aspect="equal")
plt.plot(np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle="--")
plt.ylim(0, 1.5)
plt.axis("image") plt.axes([0.3, 0.4, 0.3, 0.3], frameon=True, facecolor="y", aspect="equal")
plt.plot(2+np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle="-")
plt.ylim(0, 1.5)
plt.axis([2.1, 3.9, 0.5, 1.9]) plt.axes([0.55, 0.1, 0.3, 0.3], frameon=True, facecolor="y", aspect="equal")
plt.plot(4+np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle=":")
plt.ylim(0, 1.5)
plt.axis("off") plt.show()

================================================

图  8.3

 

import matplotlib.pyplot as plt
import numpy as np plt.axis([3, 7, -0.5, 3])
plt.plot(4+np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle="-") plt.show()

================================================

图  8.4

 

import matplotlib.pyplot as plt

ax1=plt.subplot(121)
ax1.set_xticks(range(0, 251, 50)) plt.grid(True, axis="x") ax2=plt.subplot(122)
ax2.set_xticks([])
plt.grid(True, axis="x") plt.show()

================================================

图  8.5

 

import matplotlib.pyplot as plt

ax1=plt.subplot(221)
plt.setp(ax1.get_xticklabels(), visible=True)
plt.setp(ax1.get_xticklines(), visible=True)
plt.grid(True, axis="x") ax2=plt.subplot(222)
plt.setp(ax2.get_xticklabels(), visible=True)
plt.setp(ax2.get_xticklines(), visible=False)
plt.grid(True, axis="x") ax3=plt.subplot(223)
plt.setp(ax3.get_xticklabels(), visible=False)
plt.setp(ax3.get_xticklines(), visible=True)
plt.grid(True, axis="x") ax4=plt.subplot(224)
plt.setp(ax4.get_xticklabels(), visible=False)
plt.setp(ax4.get_xticklines(), visible=False)
plt.grid(True, axis="x") plt.show()

================================================

图  8.6

 

import matplotlib.pyplot as plt
import numpy as np x=np.linspace(0.5, 2*np.pi, 20)
y=np.random.randn(20) markerline, stemlines, baseline = plt.stem(x, y) plt.setp(markerline, color="chartreuse", marker="D")
plt.setp(stemlines, linestyle="-.")
baseline.set_linewidth(2) plt.show()

================================================

图  8.7

 

import matplotlib.pyplot as plt
import numpy as np from calendar import day_name
from matplotlib.ticker import FormatStrFormatter fig=plt.figure() ax=fig.add_axes([0.2, 0.2, 0.7, 0.7])
ax.spines["bottom"].set_position(("outward", 10))
ax.spines["left"].set_position(("outward", 10))
ax.spines["top"].set_color("none")
ax.spines["right"].set_color("none") x=np.arange(1, 8, 1)
y=2*x+1 ax.scatter(x, y, c="orange", s=50, edgecolors="orange") for tickline in ax.xaxis.get_ticklines():
tickline.set_color("blue")
tickline.set_markersize(8)
tickline.set_markeredgewidth(5) for ticklabel in ax.get_xmajorticklabels():
ticklabel.set_color("slateblue")
ticklabel.set_fontsize(15)
ticklabel.set_rotation(20) ax.yaxis.set_major_formatter(FormatStrFormatter(r"$\yen%1.1f$"))
plt.xticks(x, day_name[0:7], rotation=20)
ax.yaxis.set_ticks_position("left")
ax.xaxis.set_ticks_position("bottom") for tickline in ax.yaxis.get_ticklines():
tickline.set_color("lightgreen")
tickline.set_markersize(8)
tickline.set_markeredgewidth(5) for ticklabel in ax.get_ymajorticklabels():
ticklabel.set_color("green")
ticklabel.set_fontsize(18) ax.grid(ls=":", lw=1, color="gray", alpha=0.5) plt.show()

================================================

图  8.8

 

import matplotlib.pyplot as plt
import numpy as np x=np.linspace(-2*np.pi, 2*np.pi, 1000)
y=np.sin(x) ax1=plt.subplot(221) ax1.spines["right"].set_color("none")
ax1.spines["top"].set_color("none")
ax1.set_xlim(-2*np.pi, 2*np.pi)
ax1.set_ylim(-1.0, 1.0)
plt.title(r"$a$")
plt.scatter(x, y, marker="+", color="b") ax2=plt.subplot(222) ax2.spines["right"].set_color("none")
ax2.spines["top"].set_color("none")
ax2.xaxis.set_ticks_position("bottom")
ax2.set_xlim(-2*np.pi, 2*np.pi)
ax2.set_ylim(-1.0, 1.0)
plt.title(r"$b$")
plt.scatter(x, y, marker="+", color="b") ax3=plt.subplot(223) ax3.spines["right"].set_color("none")
ax3.spines["top"].set_color("none")
ax3.yaxis.set_ticks_position("left")
ax3.set_xlim(-2*np.pi, 2*np.pi)
ax3.set_ylim(-1.0, 1.0)
plt.title(r"$c$")
plt.scatter(x, y, marker="+", color="b") ax4=plt.subplot(224) ax4.spines["right"].set_color("none")
ax4.spines["top"].set_color("none")
ax4.xaxis.set_ticks_position("bottom")
ax4.yaxis.set_ticks_position("left")
ax4.set_xlim(-2*np.pi, 2*np.pi)
ax4.set_ylim(-1.0, 1.0)
plt.title(r"$d$")
plt.scatter(x, y, marker="+", color="b") plt.show()

================================================

图  8.9

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np mpl.rcParams["font.sans-serif"]=["SimHei"]
mpl.rcParams["axes.unicode_minus"]=False x=np.linspace(-2*np.pi, 2*np.pi, 200)
y=np.sin(x)
y1=np.cos(x) ax=plt.subplot(111) ax.plot(x, y, ls="-", lw=2, label="$\sin(x)$")
ax.plot(x, y1, ls="-", lw=2, label="$\cos(x)$") ax.legend(loc="lower left") plt.title("$\sin(x)$"+"和"+"$\cos(x)$"+"函数") ax.set_xlim(-2*np.pi, 2*np.pi) plt.xticks([-2*np.pi, -3*np.pi/2, -1*np.pi, -1*(np.pi)/2, 0,
(np.pi)/2, np.pi, 3*np.pi/2, 2*np.pi],
["$-2\pi$", "$-3\pi/2$", "$-\pi$", "$-\pi/2$",
"$0$", "$\pi/2$", "$\pi$", "$3\pi/2$", "$2\pi$"]) ax.spines["right"].set_color("none")
ax.spines["top"].set_color("none") ax.spines["bottom"].set_position(("data", 0))
ax.spines["left"].set_position(("data", 0)) ax.xaxis.set_ticks_position("bottom")
ax.yaxis.set_ticks_position("left") plt.show()

================================================

 

《Python数据可视化之matplotlib实践》 源码 第三篇 演练 第八章的更多相关文章

  1. Python数据可视化——使用Matplotlib创建散点图

    Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D ...

  2. python 数据可视化(matplotlib)

    matpotlib 官网 :https://matplotlib.org/index.html matplotlib 可视化示例:https://matplotlib.org/gallery/inde ...

  3. Python数据可视化库-Matplotlib(一)

    今天我们来学习一下python的数据可视化库,Matplotlib,是一个Python的2D绘图库 通过这个库,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率图,条形图,错误图,散点图等等 废 ...

  4. Python数据可视化之Matplotlib实现各种图表

    数据分析就是将数据以各种图表的形式展现给领导,供领导做决策用,因此熟练掌握饼图.柱状图.线图等图表制作是一个数据分析师必备的技能.Python有两个比较出色的图表制作框架,分别是Matplotlib和 ...

  5. 机器学习-数据可视化神器matplotlib学习之路(三)

    之前学习了一些通用的画图方法和技巧,这次就学一下其它各种不同类型的图.好了先从散点图开始,上代码: from matplotlib import pyplot as plt import numpy ...

  6. Python数据可视化利器Matplotlib,绘图入门篇,Pyplot介绍

    Pyplot matplotlib.pyplot是一个命令型函数集合,它可以让我们像使用MATLAB一样使用matplotlib.pyplot中的每一个函数都会对画布图像作出相应的改变,如创建画布.在 ...

  7. Python数据可视化库-Matplotlib(二)

    我们接着上次的继续讲解,先讲一个概念,叫子图的概念. 我们先看一下这段代码 import matplotlib.pyplot as plt fig = plt.figure() ax1 = fig.a ...

  8. Python数据可视化之matplotlib

    常用模块导入 import numpy as np import matplotlib import matplotlib.mlab as mlab import matplotlib.pyplot ...

  9. python数据可视化(matplotlib)

  10. python数据可视化-matplotlib入门(7)-从网络加载数据及数据可视化的小总结

    除了从文件加载数据,另一个数据源是互联网,互联网每天产生各种不同的数据,可以用各种各样的方式从互联网加载数据. 一.了解 Web API Web 应用编程接口(API)自动请求网站的特定信息,再对这些 ...

随机推荐

  1. kettle从入门到精通 第四十八课 ETL之kettle webspoon

    1.kettle自带的客户端spoon工具是cs架构,多人协同办公起来不是特别方便.当然spoon也可以通过文件仓库设置为database模式进行协同办公.每个人在自己电脑上安装&打开spoo ...

  2. Kali Linux 终端字体配色

    在用root用户登录Kali Liunx时,会发现终端的字体无配色,非常难看,以下这幅图便是kali用户和root用户的区别,看着真难受. echo $PS1,这便是区别所在. 那我们怎么让root用 ...

  3. 副本集replicaSet

    mongodb高可用架构 https://www.mongodb.com/docs/manual/tutorial/deploy-replica-set/ 复制是跨多个服务器同步数据的过程. 复制提供 ...

  4. .NET8操作Mysql,Pomelo.EntityFrameworkCore.MySql版本目前最高只有7.0解决办法

    Pomelo.EntityFrameworkCore.MySql7.0是不支持.NET8的,但现在Pomelo.EntityFrameworkCore.MySql的最新版本只有7.0 因为 Pomel ...

  5. 端口占用,无法通过netstat找到进程,占用的端口又不能修改,该怎么办?

    最近遇到一个奇葩的问题,项目跑的好好的,没有安装其它特殊软件,突然服务器启动报错,日志如下,显然是服务器的8080端口占用了. Caused by: java.net.BindException: A ...

  6. .NET使用原生方法实现文件压缩和解压

    前言 在.NET中实现文件或文件目录压缩和解压可以通过多种方式来完成,包括使用原生方法(System.IO.Compression命名空间中的类)和第三方库(如:SharpZipLib.SharpCo ...

  7. MoneyPrinterPlus:AI自动短视频生成工具-阿里云配置详解

    MoneyPrinterPlus是一个很好的自动短视频生成工具,虽然是一个非常好的工具,但是有些小伙伴可能不太清楚具体应该如何配置才能让它跑起来. 因为MoneyPrinterPlus依赖一些具体的配 ...

  8. C# pythonnet(1)_传感器数据清洗算法

    Python代码如下 import pandas as pd # 读取数据 data = pd.read_csv('data_row.csv') # 检查异常值 def detect_outliers ...

  9. 实验13.Nat转发telnet实验

    # 实验13.Nat转发telnet实验 本节用于测试NAT服务,用于将流量转发到内网的指定设备上. 实验组 配置路由器 由于之前配置过ospf,所以这次用直接指静态练手,首先确保全网畅通 R3 GW ...

  10. python_8 拆包、内置函数和高阶函数

    一.查缺补漏 1. \t 子表符,用于对其二.拆包 1. 拆包:顾名思义就是将可迭代的对象如元组,列表,字符串,集合,字典,拆分出相对应的元素 2. 形式:拆包一般分两种方式,一种是以变量的方式来接收 ...