题意:

给n个城市,m条有向边。每条边有权值,如今有些城市能够选择得到。可选的城市有一个价值。可是要满足从1到达不了这些城市,为了满足要求能够去掉一些边,须要花费边的权值,问终于得到的最大价值是多少,并给出方案。

最小割 = 最大流

建图非常easy。源点就是1,设置汇点T。

按图中的有向边关系连边。

对于全部的可选择的城市u,连一条u->T的容量为w的边。

跑一遍最大流。即为最小割。

ans = sum - 最小割。

写出方案。就是走一遍bfs。看 哪些满流边(而且边的汇不是T,这是由于这种边是所选的城市扩展的边),打出来就好。

代码:

#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<cstring>
using namespace std;
const int N = 1000 + 10 ;
const int inf = 1000000000;
typedef long long ll;
struct Edge
{
int from,to,cap,flow;
};
int n,m,s,t,num,f;
int w[N],use[N];
int vis[2*N],cur[2*N];
vector<int> G[2*N];
vector<Edge> edges;
queue<int> cut;
void init()
{
edges.clear();
for(int i=1;i<=n;i++) G[i].clear();
memset(vis,0,sizeof(vis));
}
int add(int u,int v,int c)
{
edges.push_back((Edge){u,v,c,0});
edges.push_back((Edge){v,u,0,0});
num = edges.size();
G[u].push_back(num-2);
G[v].push_back(num-1);
}
int bfs()
{
int front;
memset(vis,0,sizeof(vis));
vis[s] = 1;
queue<int> q;
q.push(s);
while(!q.empty()){
front = q.front(); q.pop();
for(int i=0;i<G[front].size();i++)
{
Edge& e = edges[G[front][i]];
if(!vis[e.to] && e.cap > e.flow)
{
q.push(e.to);
vis[e.to] = vis[front]+1;
}
}
}
return vis[t];
}
int dfs(int x,int a)
{
if(x==t || a==0) return a;
int f=0,flow=0;
for(int i=0;i<G[x].size();i++){
Edge& e = edges[G[x][i]];
if(vis[e.to]==vis[x]+1 && (f=dfs(e.to,min(a,e.cap-e.flow)))>0 )
{
flow += f;
e.flow += f;
a -= f;
edges[G[x][i]^1].flow -= f;
if(a==0) break;
}
}
return flow;
}
int dinic()
{
int flow = 0;
while(bfs())
{
memset(cur,0,sizeof(cur));
flow += dfs(s,inf);
}
return flow;
}
void find_cut()
{
while(!cut.empty()) cut.pop();
memset(vis,0,sizeof(vis));
vis[1] = 1;
queue<int> q;
q.push(1);
int front;
while(!q.empty()){
front = q.front(); q.pop();
for(int i=0;i<G[front].size();i++){
Edge& e = edges[G[front][i]];
if(!vis[e.to] && e.cap > e.flow){
vis[e.to] = 1;
q.push(e.to);
}
}
}
for(int i=1;i<=n;i++){
if(vis[i])
for(int j=0;j<G[i].size();j++){
Edge& e = edges[G[i][j]];
if(G[i][j]&1) continue;
if(e.to!=t && !vis[e.to])
cut.push(G[i][j]/2+1);
}
}
return ;
}
void print_cut()
{
int len = cut.size();
int ro;
cout<<len<<" ";
for(int i=1;i<len;i++){
ro = cut.front();
cut.pop();
printf("%d ",ro);
}
ro = cut.front();
cut.pop();
printf("%d\n",ro);
}
int main()
{
int T,cas=0;
scanf("%d",&T);
while(T--){
ll sum = 0;
scanf("%d%d%d",&n,&m,&f);
init();
s = 1; t = n+1;
for(int i=1;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
for(int i=1;i<=f;i++){
int u,w;
scanf("%d%d",&u,&w);
add(u,t,w);
sum += w;
}
ll ans = dinic();
find_cut();
printf("Case %d: %lld\n",++cas,sum-ans);
print_cut();
}
return 0;
}

hdu3251 最小割的更多相关文章

  1. HDU3251 Being a Hero(最小割)

    题目大概一个国家n个城市由m条单向边相连,摧毁每条边都有一个费用.现在你可以选择所给的f个城市中的若干个,每个城市选择后都有一定的价值,但首都1号城市必须到达不了你选择的城市,因为你可能需要摧毁一些边 ...

  2. HDU3251 最大流(最小割)

    Being a Hero Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...

  3. 最大流&最小割 - 专题练习

    [例1][hdu5889] - 算法结合(BFS+Dinic) 题意 \(N\)个点\(M\)条路径,每条路径长度为\(1\),敌人从\(M\)节点点要进攻\(1\)节点,敌人总是选择最优路径即最短路 ...

  4. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  5. BZOJ-2127-happiness(最小割)

    2127: happiness(题解) Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1806  Solved: 875 Description 高一 ...

  6. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  7. BZOJ3438 小M的作物(最小割)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...

  8. 最大流-最小割 MAXFLOW-MINCUT ISAP

    简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...

  9. bzoj1412最小割

    太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...

随机推荐

  1. 九度oj 题目1085:求root(N, k) 清华2010年机试题目

    题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k).N'为N的k进制表示的各位数字之和.输入x,y,k,输出root(x^y,k)的值 (这里^ ...

  2. mq类----2

    手动应答方式 使用get my_consumer.php 消费者  生产者和上一篇 一样 <?php /** * Created by PhpStorm. * User: brady * Dat ...

  3. 测试openssl_encrypt

    <?php //$string = 'It works ? Or not it works ?'; //$pass = '1234'; //$method = 'aes128'; // // / ...

  4. 在SAE搭建微信公众账号服务

    让我们回到2014年11月,从公司请假回成都,在天府软件园B区旁边的小区里,那个10多平米的出租屋里,闲来无事,我想找个事情做一做,好让我这漂浮的心静下来.大约在半年前就申请了微信的一个公众账号,一直 ...

  5. 【bzoj1043】[HAOI2008]下落的圆盘 计算几何

    题目描述 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. 输入 第一行为1个整数n,N<=1000接下来n行每行3个实 ...

  6. 【Luogu】P3174毛毛虫(树形DP)

    题目链接 树形DP水题,设f[x][0]是以x为根的子树,内部只有半条链(就是链的两个端点一个在子树里,一个不在子树里)的最大值,f[x][1]是以x为根的子树,内部有一条完整的链(选两个内部的子树作 ...

  7. SG函数 与 ICG问题

    ICG ICG(Impartial Combinatorial Games)游戏是组合游戏(Combinatorial Games)的一类 满足如下性质: ①有两名玩家 ②两名玩家轮流操作,在一个有限 ...

  8. javaweb学习总结(十)——HttpServletRequest对象(一)(转)

    (每天都会更新至少一篇以上,有兴趣的可以关注)转载自孤傲苍狼 一.HttpServletRequest介绍 HttpServletRequest对象代表客户端的请求,当客户端通过HTTP协议访问服务器 ...

  9. P2330 05四川 繁忙的都市

    题目描述 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条 ...

  10. php validator classes

    <?php /** * 验证类 */ class Validator { /* 函数名称:isNumber 简要描述:检查输入的是否为数字 输入:string 输出:boolean */ pub ...