▶ 本章介绍了多设备胸膛下的 CUDA 编程,以及一些特殊存储类型对计算速度的影响

● 显存和零拷贝内存的拷贝与计算对比

 #include <stdio.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "D:\Code\CUDA\book\common\book.h" #define imin(a,b) (a<b?a:b)
#define SIZE (33 * 1024 * 1024) const int threadsPerBlock = ;
const int blocksPerGrid = imin(, (SIZE + threadsPerBlock - ) / threadsPerBlock); __global__ void dot(int size, float *a, float *b, float *c)//分段计算点积写入全局内存
{
__shared__ float share[threadsPerBlock];
int tid = threadIdx.x + blockIdx.x * blockDim.x;
int cacheIndex = threadIdx.x; float temp = ;
while (tid < size)
{
temp += a[tid] * b[tid];
tid += blockDim.x * gridDim.x;
} share[cacheIndex] = temp;
__syncthreads(); int i = blockDim.x / ;
while (i != )
{
if (cacheIndex < i)
share[cacheIndex] += share[cacheIndex + i];
__syncthreads();
i /= ;
}
if (cacheIndex == )
c[blockIdx.x] = share[]; return;
} void malloc_test()// 利用显存进行计算
{
cudaEvent_t start, stop;
float *a, *b, *partial_c, c;
float *dev_a, *dev_b, *dev_partial_c;
float elapsedTime; cudaEventCreate(&start);
cudaEventCreate(&stop); a = (float*)malloc(SIZE * sizeof(float));
b = (float*)malloc(SIZE * sizeof(float));
partial_c = (float*)malloc(blocksPerGrid * sizeof(float));
cudaMalloc((void**)&dev_a,SIZE * sizeof(float));
cudaMalloc((void**)&dev_b,SIZE * sizeof(float));
cudaMalloc((void**)&dev_partial_c,blocksPerGrid * sizeof(float)); for (int i = ; i<SIZE; i++)
{
a[i] = i;
b[i] = i * ;
} cudaEventRecord(start, ); cudaMemcpy(dev_a, a, SIZE * sizeof(float),cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, SIZE * sizeof(float),cudaMemcpyHostToDevice); dot << <blocksPerGrid, threadsPerBlock >> >(SIZE, dev_a, dev_b,dev_partial_c); cudaMemcpy(partial_c, dev_partial_c,blocksPerGrid * sizeof(float),cudaMemcpyDeviceToHost); cudaEventRecord(stop, );
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime,start, stop); c = ;
for (int i = ; i < blocksPerGrid; c += partial_c[i], i++); free(a);
free(b);
free(partial_c);
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_partial_c);
cudaEventDestroy(start);
cudaEventDestroy(stop); printf("cudaMalloc, time:\t%3.1f ms,value:\t%f\n", elapsedTime, c);
return;
} void cuda_host_alloc_test()// 利用零拷贝内存进行计算
{
cudaEvent_t start, stop;
float *a, *b, *partial_c, c;
float *dev_a, *dev_b, *dev_partial_c;
float elapsedTime; cudaEventCreate(&start);
cudaEventCreate(&stop); cudaHostAlloc((void**)&a,SIZE * sizeof(float),cudaHostAllocWriteCombined |cudaHostAllocMapped);
cudaHostAlloc((void**)&b,SIZE * sizeof(float),cudaHostAllocWriteCombined |cudaHostAllocMapped);
cudaHostAlloc((void**)&partial_c,blocksPerGrid * sizeof(float),cudaHostAllocMapped);
cudaHostGetDevicePointer(&dev_a, a, );
cudaHostGetDevicePointer(&dev_b, b, );
cudaHostGetDevicePointer(&dev_partial_c,partial_c, ); for (int i = ; i < SIZE; i++)
{
a[i] = i;
b[i] = i * ;
} cudaEventRecord(start, ); dot << <blocksPerGrid, threadsPerBlock >> > (SIZE, dev_a, dev_b, dev_partial_c);
cudaThreadSynchronize(); cudaEventRecord(stop, );
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime,start, stop); c = ;
for (int i = ; i < blocksPerGrid; c += partial_c[i], i++); cudaFreeHost(a);
cudaFreeHost(b);
cudaFreeHost(partial_c);
cudaEventDestroy(start);
cudaEventDestroy(stop); printf("cudaHostAlloc, time:\t%3.1f ms,value:\t%f\n", elapsedTime, c);
return;
} int main(void)
{
cudaSetDeviceFlags(cudaDeviceMapHost); malloc_test();
cuda_host_alloc_test(); getchar();
return;
}

● 程序输出结果,第一行是利用显存进行计算的结果,第二行是利用零拷贝内存进行计算的结果。

● 零拷贝内存的使用过程:

 float *a, *dev_a;
cudaSetDeviceFlags(cudaDeviceMapHost);// 设置内存标志,表明希望映射主机内存
cudaHostAlloc((void**)&a,SIZE * sizeof(float),cudaHostAllocWriteCombined |cudaHostAllocMapped);
//标记flag,分别是“合并式写入”和“GPU可访问”
cudaHostGetDevicePointer(&dev_a, a, );// 将内存地址映射到GPU上,以后就可以使用dev_a[n]等下标方式访问dev_a foo << <blocksize, threadsize >> > (dev_a); cudaThreadSynchronize();
cudaFreeHost(a);//释放内存

● 合并式写入不会改变应用程序的性能,却可以显著提升GPU读取内存的性能。但是如果CPU也需要读取这部分的内存时,效率较低.

●使用零拷贝内存见减小了PCIE通道的读写延迟,提高了数据访问速率。但是GPU不会缓存零拷贝内存的内容,对于需要多次读写的内存数据效率较低,不如直接在显存中存储。本例子中点积运算满足数据只访问一次的条件,所以效率提高很明显。

● 多设备并行计算(被改成了双线程)

 #include <stdio.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "D:\Code\CUDA\book\common\book.h" #define imin(a,b) (a<b?a:b)
#define SIZE (33*1024*1024)
#define THREADSIZE (256)
#define BLOCKSIZE (imin(32, (SIZE / 2 + THREADSIZE - 1) / THREADSIZE)) struct DataStruct
{
int deviceID;
int size;
float *a;
float *b;
float returnValue;
}; __global__ void dot(int size, float *a, float *b, float *c)//分段计算点积写入全局内存
{
__shared__ float share[THREADSIZE];
int tid = threadIdx.x + blockIdx.x * blockDim.x;
int cacheIndex = threadIdx.x; float temp = ;
while (tid < size)
{
temp += a[tid] * b[tid];
tid += blockDim.x * gridDim.x;
} share[cacheIndex] = temp;
__syncthreads(); int i = blockDim.x / ;
while (i != )
{
if (cacheIndex < i)
share[cacheIndex] += share[cacheIndex + i];
__syncthreads();
i /= ;
}
if (cacheIndex == )
c[blockIdx.x] = share[]; return;
} void* routine(void *pvoidData)// C回调函数标准,void*型函数,传入void型的指针,再转化回原来的的格式
{
DataStruct *data = (DataStruct*)pvoidData;
cudaSetDevice(data->deviceID); int i;
float *partial_c, c;
float *dev_a, *dev_b, *dev_partial_c; partial_c = (float*)malloc(BLOCKSIZE * sizeof(float));
cudaMalloc((void**)&dev_a, data->size * sizeof(float));
cudaMalloc((void**)&dev_b, data->size * sizeof(float));
cudaMalloc((void**)&dev_partial_c, BLOCKSIZE * sizeof(float)); cudaMemcpy(dev_a, data->a, data->size * sizeof(float),cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, data->b, data->size * sizeof(float),cudaMemcpyHostToDevice); dot << <BLOCKSIZE, THREADSIZE >> > (data->size, dev_a, dev_b, dev_partial_c); cudaMemcpy(partial_c, dev_partial_c, BLOCKSIZE * sizeof(float),cudaMemcpyDeviceToHost); for (i = ,c=; i < BLOCKSIZE; c += partial_c[i], i++); free(partial_c);
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_partial_c); data->returnValue = c;
printf("\n\troutine finished!");
return NULL;
} int main(void)
{
float *a = (float*)malloc(sizeof(float) * SIZE);//公用的输入数组
float *b = (float*)malloc(sizeof(float) * SIZE); for (int i = ; i < SIZE; i++)
{
a[i] = i;
b[i] = i * ;
} DataStruct data[];
data[].deviceID = ;
data[].size = SIZE / ;
data[].a = a;
data[].b = b;
data[].deviceID = ;//源代码中这里等于1,使用第二台设备进行计算
data[].size = SIZE / ;
data[].a = a + SIZE / ;
data[].b = b + SIZE / ; // 使用CreateThread()创建新线程来分配计算
HANDLE thread = CreateThread(NULL, , (PTHREAD_START_ROUTINE)routine, &(data[]), , NULL);
routine(&(data[])); WaitForSingleObject(thread, INFINITE);// 等待和关闭线程
CloseHandle(thread); free(a);
free(b); printf("\n\tValue calculated: %f\n",data[].returnValue + data[].returnValue);
getchar();
return ;
}

● 关于创建和销毁线程:

 HANDLE thread = CreateThread(NULL, , (PTHREAD_START_ROUTINE)routine, &(data[]), , NULL);
WaitForSingleObject(thread, INFINITE);
CloseHandle(thread); static HANDLE CreateThread(
LPSECURITY_ATTRIBUTES lpsa,//
DWORD dwStackSize,// 堆栈大小
LPTHREAD_START_ROUTINE pfnThreadProc,// 线程过程
void* pvParam,// 需要传递的线程参数
DWORD dwCreationFlags,// 创建标志,0或CREATE_SUSPENDED
DWORD* pdwThreadId// 接收新线程的线程ID_WORD变量地址
) throw();// 函数不会抛出异常 WaitForSingleObject(thread, INFINITE);
// 第1个参数为线程句柄
// 第2个参数为最小等待时间,可取INFINITE HANDLE list[N];
WaitForMultipleObjects(N, list, , );
// 第1个参数为线程个数
// 第2个参数为句柄列表
// 第3个参数为等待状态,0表示等待所有线程结束再继续,1表示一旦有线程结束或到达等待时间就继续
// 第4个参数为最小等待时间

● 使用可移动内存进行多设备并行计算(被改成了双线程)

 #include <stdio.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "D:\Code\CUDA\book\common\book.h" #define imin(a,b) (a<b?a:b)
#define SIZE (33*1024*1024)
#define THREADSIZE (256)
#define BLOCKSIZE (imin(32, (SIZE / 2 + THREADSIZE - 1) / THREADSIZE)) struct DataStruct
{
int deviceID;
int size;
float *a;
float *b;
float returnValue;
}; __global__ void dot(int size, float *a, float *b, float *c)//分段计算点积写入全局内存
{
__shared__ float share[THREADSIZE];
int tid = threadIdx.x + blockIdx.x * blockDim.x;
int cacheIndex = threadIdx.x; float temp = ;
while (tid < size)
{
temp += a[tid] * b[tid];
tid += blockDim.x * gridDim.x;
} share[cacheIndex] = temp;
__syncthreads(); int i = blockDim.x / ;
while (i != )
{
if (cacheIndex < i)
share[cacheIndex] += share[cacheIndex + i];
__syncthreads();
i /= ;
}
if (cacheIndex == )
c[blockIdx.x] = share[]; return;
} void* routine(void *pvoidData)
{
DataStruct *data = (DataStruct*)pvoidData;
cudaSetDevice(data->deviceID);
if (data->deviceID != )// 若使用新设备,则要设置内存地址映射(在我的电脑上这部分不会被运行)
cudaSetDeviceFlags(cudaDeviceMapHost); int i;
float *partial_c, c;
float *dev_a, *dev_b, *dev_partial_c; partial_c = (float*)malloc(BLOCKSIZE * sizeof(float));
cudaHostGetDevicePointer(&dev_a, data->a, );
cudaHostGetDevicePointer(&dev_b, data->b, );
cudaMalloc((void**)&dev_partial_c, BLOCKSIZE * sizeof(float)); dot << <BLOCKSIZE, THREADSIZE >> > (data->size, dev_a, dev_b, dev_partial_c); cudaMemcpy(partial_c, dev_partial_c, BLOCKSIZE * sizeof(float), cudaMemcpyDeviceToHost); for (i = , c = ; i < BLOCKSIZE; c += partial_c[i], i++); free(partial_c);
cudaFree(dev_partial_c); data->returnValue = c;
printf("\n\tRoutine finished!");
return ;
} int main(void)
{
float *a, *b;
cudaSetDevice();
cudaSetDeviceFlags(cudaDeviceMapHost);
cudaHostAlloc((void**)&a, SIZE * sizeof(float),cudaHostAllocWriteCombined |cudaHostAllocPortable |cudaHostAllocMapped);
cudaHostAlloc((void**)&b, SIZE * sizeof(float),cudaHostAllocWriteCombined |cudaHostAllocPortable |cudaHostAllocMapped); for (int i = ; i < SIZE; i++)
{
a[i] = i;
b[i] = i * ;
} DataStruct data[];
data[].deviceID = ;
data[].size = SIZE / ;
data[].a = a;
data[].b = b;
data[].deviceID = ;
data[].size = SIZE / ;
data[].a = a + SIZE / ;
data[].b = b + SIZE / ; HANDLE thread = CreateThread(NULL, , (PTHREAD_START_ROUTINE)routine, &(data[]), , NULL);
routine(&(data[]));
WaitForSingleObject(thread, INFINITE);
CloseHandle(thread); cudaFreeHost(a);
cudaFreeHost(b); printf("\n\tValue calculated: %f\n",data[].returnValue + data[].returnValue);
getchar();
return ;
}

● 可移动内存说明:“固定内存”是针对线程而言的,也就是说除了申请该固定内存的县城以外其他线程不能将其看作固定内存,而是可分页内存。这时需要添加固定内存的“可移动”属性,使得所有线程都将该段内存看做固定内存。

● 可移动内存的使用

 float *a;
cudaSetDeviceFlags(cudaDeviceMapHost);// 设置内存标志,表明希望映射主机内存
cudaHostAlloc((void**)&a, SIZE * sizeof(float), cudaHostAllocWriteCombined | cudaHostAllocPortable | cudaHostAllocMapped);
// 增加标记“可移动内存” cudaSetDeviceFlags(cudaDeviceMapHost);
// 在其他设备中使用这部分内存时需要再次声明内存标志 cudaFreeHost(a);

第十一章 多GPU系统的CUDA C的更多相关文章

  1. [问题解决]《GPU高性能编程CUDA实战》中第4章Julia实例“显示器驱动已停止响应,并且已恢复”问题的解决方法

    以下问题的出现及解决都基于"WIN7+CUDA7.5". 问题描述:当我编译运行<GPU高性能编程CUDA实战>中第4章所给Julia实例代码时,出现了显示器闪动的现象 ...

  2. 《GPU高性能编程CUDA实战》第五章 线程并行

    ▶ 本章介绍了线程并行,并给出四个例子.长向量加法.波纹效果.点积和显示位图. ● 长向量加法(线程块并行 + 线程并行) #include <stdio.h> #include &quo ...

  3. 《GPU高性能编程CUDA实战》第十一章 多GPU系统的CUDA C

    ▶ 本章介绍了多设备胸膛下的 CUDA 编程,以及一些特殊存储类型对计算速度的影响 ● 显存和零拷贝内存的拷贝与计算对比 #include <stdio.h> #include " ...

  4. 《GPU高性能编程CUDA实战》第四章 简单的线程块并行

    ▶ 本章介绍了线程块并行,并给出两个例子:长向量加法和绘制julia集. ● 长向量加法,中规中矩的GPU加法,包含申请内存和显存,赋值,显存传入,计算,显存传出,处理结果,清理内存和显存.用到了 t ...

  5. 《GPU高性能编程CUDA实战》第七章 纹理内存

    ▶ 本章介绍了纹理内存的使用,并给出了热传导的两个个例子.分别使用了一维和二维纹理单元. ● 热传导(使用一维纹理) #include <stdio.h> #include "c ...

  6. 《GPU高性能编程CUDA实战》第六章 常量内存

    ▶ 本章介绍了常量内存的使用,并给光线追踪的一个例子.介绍了结构cudaEvent_t及其在计时方面的使用. ● 章节代码,大意是有SPHERES个球分布在原点附近,其球心坐标在每个坐标轴方向上分量绝 ...

  7. 《GPU高性能编程CUDA实战》第三章 CUDA设备相关

    ▶ 这章介绍了与CUDA设备相关的参数,并给出了了若干用于查询参数的函数. ● 代码(已合并) #include <stdio.h> #include "cuda_runtime ...

  8. 《GPU高性能编程CUDA实战》第九章 原子性

    ▶ 本章介绍了原子操作,给出了基于原子操作的直方图计算的例子. ● 章节代码 #include <stdio.h> #include "cuda_runtime.h" ...

  9. 《GPU高性能编程CUDA实战中文》中第四章的julia实验

    在整个过程中出现了各种问题,我先将我调试好的真个项目打包,提供下载. /* * Copyright 1993-2010 NVIDIA Corporation. All rights reserved. ...

  10. 《GPU高性能编程CUDA实战》附录二 散列表

    ▶ 使用CPU和GPU分别实现散列表 ● CPU方法 #include <stdio.h> #include <time.h> #include "cuda_runt ...

随机推荐

  1. uvalive 7500 Boxes and Balls

    https://vjudge.net/problem/UVALive-7500 题意: 找到规律之后发现给出一个数n,要求找到1 + 2i + ... + x <= n,找出1到x的和. 思路: ...

  2. Spring 具名参数NamedParameterJdbcTemplate

    具名参数: 具名参数:SQL 按名称(以冒号开头)而不是按位置进行指定. 具名参数更易于维护, 也提升了可读性. 具名参数由框架类在运行时用占位符取代 我们之前一直是用JDBCTemplate  进行 ...

  3. 一个综合实例讲解vue的基础知识点。

    本文通过一个简单的实例来讲解一下vue的基本知识点.通过这个综合实例的讲解,vue的基础知识就会掌握的差不多了. 首先看一下项目的效果:

  4. 关于js浮点数计算精度不准确问题的解决办法

    今天在计算商品价格的时候再次遇到js浮点数计算出现误差的问题,以前就一直碰到这个问题,都是简单的使用tofixed方法进行处理一下,这对于一个程序员来说是及其不严谨的.因此在网上收集了一些处理浮点数精 ...

  5. Ubuntu16.04.1安装JDK1.8.0

    今天在安装Zookeeper的时候需要安装JDK,对于.Neter来说还是有点陌生,下面我就把安装JDK的步骤记录一下,分享给大家. 一.下载JDK安装包:http://www.oracle.com/ ...

  6. Detect Capital

    Given a word, you need to judge whether the usage of capitals in it is right or not. We define the u ...

  7. 使用SQLite做本地数据缓存的思考

    前言 在一个分布式缓存遍地都是的环境下,还讲本地缓存,感觉有点out了啊!可能大家看到标题,就没有想继续看下去的欲望了吧.但是,本地缓存的重要性也是有的! 本地缓存相比分布式缓存确实是比较out和比较 ...

  8. js-异步机制与同步机制

    Javascript的优势之一是其如何处理异步代码.异步代码会被放入一个事件队列,等到所有其他代码执行后才进行,而不会阻塞线程 1 理解异步代码: 1.1 JavaScript最基础的异步函数是set ...

  9. nodejs后台集成富文本编辑器(ueditor)

    1 下载ueditor nodejs版本 2 复制public目录下面的文件 到项目静态资源public文件夹下 3 在项目根目录创建ueditor文件夹 要复制进来的内容为 4 在根目录的 uedi ...

  10. ZOJ2401 Zipper 双塔式 DP

    遇到双塔DP,写一下. flag是为了避免memset多次导致的时间浪费. #include<cstdio> #include<cstdlib> #include<ios ...