import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets, linear_model
from sklearn.model_selection import train_test_split def load_data():
diabetes = datasets.load_diabetes()
return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) #Lasso回归
def test_Lasso(*data):
X_train,X_test,y_train,y_test=data
regr = linear_model.Lasso()
regr.fit(X_train, y_train)
print('Coefficients:%s, intercept %.2f'%(regr.coef_,regr.intercept_))
print("Residual sum of squares: %.2f"% np.mean((regr.predict(X_test) - y_test) ** 2))
print('Score: %.2f' % regr.score(X_test, y_test)) # 产生用于回归问题的数据集
X_train,X_test,y_train,y_test=load_data()
# 调用 test_Lasso
test_Lasso(X_train,X_test,y_train,y_test) def test_Lasso_alpha(*data):
X_train,X_test,y_train,y_test=data
alphas=[0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,1000]
scores=[]
for i,alpha in enumerate(alphas):
regr = linear_model.Lasso(alpha=alpha)
regr.fit(X_train, y_train)
scores.append(regr.score(X_test, y_test))
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(alphas,scores)
ax.set_xlabel(r"$\alpha$")
ax.set_ylabel(r"score")
ax.set_xscale('log')
ax.set_title("Lasso")
plt.show() # 调用 test_Lasso_alpha
test_Lasso_alpha(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——Lasso回归的更多相关文章

  1. 吴裕雄 python 机器学习——逻辑回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  2. 吴裕雄 python 机器学习——ElasticNet回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  3. 吴裕雄 python 机器学习——岭回归

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...

  4. 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...

  5. 吴裕雄 python 机器学习——回归决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  6. 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  7. 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  8. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  9. 吴裕雄 python 机器学习——模型选择回归问题性能度量

    from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...

随机推荐

  1. 带查询参数 可分页 的 T-SQL 语句写法

    ) DECLARE @pageindex int DECLARE @pagesize int DECLARE @classid int set @keys = '' ; ; ; with temptb ...

  2. PCIE读书笔记

    PCIE读书笔记 什么是TLP:

  3. ECMA6 New Features

    花了一些时间把ECMA6的新特性进行了回顾,给自己建立了思维索引,大部分内容借鉴了阮一峰大神的博客. refers: http://es6.ruanyifeng.com/#docs/arraybuff ...

  4. [原创] JAVA 递归线程池测试 ExecutorService / ForkJoinPool

    测试工具使用递归的方式获取子进程的Msg消息,目前有2种常用的ExecutorService / ForkJoinPool 为了测试哪种效果较好,我们来写个测试Demo,循环5555555次+1(加锁 ...

  5. 生成3位的序列号_仅仅CASE WHEN的简单应用

    PNo, , ) AS sn INTO #temp1 FROM tbl_test SELECT ), sn) ), sn) ), sn) END AS sn, PNo FROM #temp1

  6. Redis单线程架构

    参考链接: http://blog.csdn.net/qqqqq1993qqqqq/article/details/77538202 单线程模型: redis中的数据结构并不全是简单的kv,还有lis ...

  7. Unity GeometryShader(从一个线框渲染的例子开始)

    GeometryShader这个概念,已经出现很久了,但由于性能不佳,所以使用的并不多.甚至移动平台根本就不支持.移动平台的硬件更新速度也是越来越快,GS的应用普及应该不会太远.就现阶段而言,GS来做 ...

  8. 错误 88 error C2248: “CObject::CObject”: 无法访问 private 成员(在“CObject”类中声明) c:\program files (x86)\microsoft visual studio 9.0\vc\atlmfc\include\afxcoll.h 590

    最近接收了以前新公司遗留的代码,一个函数动不动就少的一千行,多的几千行,真是受不了这编码风格! 于是便使用了VS自带的重构工具,选择代码后右键-重构-提取方法,提取完方法就编译不过,想了好久原因,原来 ...

  9. Oracle表空间不足;查询表空间使用率(unable to extend lob segment SYS_LOB0000076749C00006$$ by 8192 in tablespace USERS)

    查询表空间对应地址 *),) total_space from dba_data_files order by tablespace_name; //方案一:修改表空间大小(32000可改为想要的数值 ...

  10. Java 转JSON串

    一.JSON (JavaScript Object Notation) 1.轻量级数据交换格式能够替代XML的工作 2.数据格式比较简单, 易于读写, 格式都是压缩的, 占用带宽小(简洁.简单.体积小 ...