吴裕雄 python 机器学习——Lasso回归
import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets, linear_model
from sklearn.model_selection import train_test_split def load_data():
diabetes = datasets.load_diabetes()
return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) #Lasso回归
def test_Lasso(*data):
X_train,X_test,y_train,y_test=data
regr = linear_model.Lasso()
regr.fit(X_train, y_train)
print('Coefficients:%s, intercept %.2f'%(regr.coef_,regr.intercept_))
print("Residual sum of squares: %.2f"% np.mean((regr.predict(X_test) - y_test) ** 2))
print('Score: %.2f' % regr.score(X_test, y_test)) # 产生用于回归问题的数据集
X_train,X_test,y_train,y_test=load_data()
# 调用 test_Lasso
test_Lasso(X_train,X_test,y_train,y_test) def test_Lasso_alpha(*data):
X_train,X_test,y_train,y_test=data
alphas=[0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,1000]
scores=[]
for i,alpha in enumerate(alphas):
regr = linear_model.Lasso(alpha=alpha)
regr.fit(X_train, y_train)
scores.append(regr.score(X_test, y_test))
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(alphas,scores)
ax.set_xlabel(r"$\alpha$")
ax.set_ylabel(r"score")
ax.set_xscale('log')
ax.set_title("Lasso")
plt.show() # 调用 test_Lasso_alpha
test_Lasso_alpha(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——Lasso回归的更多相关文章
- 吴裕雄 python 机器学习——逻辑回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄 python 机器学习——ElasticNet回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄 python 机器学习——岭回归
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...
- 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——回归决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——模型选择回归问题性能度量
from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...
随机推荐
- Centos 7 修改日期和时间的命令
timedatectl set-ntp no //关闭时间动态更新timedatectl set-time "YYYY-MM-DD HH:MM:SS" //设置时间和日期timed ...
- E4A 与JS交互事件无反应
今天碰到一个问题,E4A与JS的交互,调用JS函数后,事件没有任何反应,给JS赋值,会看到浏览框中有内容显示,但是事件为什么就没反应呢. 把官方的例程打开编译试了也不行. 后来在群中问了,原来是这里设 ...
- fragment滑动界面
1.代码页面 package com.example.fragment_list_copy; import android.app.FragmentManager;import android.sup ...
- linux下钉钉,微信
google-chrome --app=https://im.dingtalk.com/ google-chrome --app=https://wx.qq.com/
- bpmn-js起步
https://blog.csdn.net/u013253924/article/details/85784002 通过本文逐步熟悉bpmn-js. 快速介绍: bpmn.js是一个BPMN2.0渲染 ...
- 设计Optaplanner下实时规划服务的失败经历
其实本文不知道算不算一个知识点分享,过程很美妙,但结果很失败.我们在利用Optaplanner的Real-Time planning(实时规则)功能,设计实时在线规划服务时,遇到一个属于Optapla ...
- python中类似三元表达式的写法
python中没有其它语言中的三元表达式,如: a = x > y ? m : n; python中的类似写法为: a = 1 b = 2 h = "" h = " ...
- Windows自定义运行命令
1 打开注册表regedit 2 找到:HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths 3 新增项,自己运 ...
- version `GLIBC_2.17' not found 解决方法
1.先查看是哪个函数用的是GLIBC_2.17 root@emb-pc:/home/emb/temp# nm lib61850.so | grep GLIBC_2.17 U clock_gettime ...
- 小程序中添加客服按钮contact-button
小程序的客服系统,是微信做的非常成功的一个功能,开发者可以很方便的通过一行代码,就可实现客服功能. 1. 普通客服按钮添加 <button open-type='contact' session ...