import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets, linear_model
from sklearn.model_selection import train_test_split def load_data():
diabetes = datasets.load_diabetes()
return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) #Lasso回归
def test_Lasso(*data):
X_train,X_test,y_train,y_test=data
regr = linear_model.Lasso()
regr.fit(X_train, y_train)
print('Coefficients:%s, intercept %.2f'%(regr.coef_,regr.intercept_))
print("Residual sum of squares: %.2f"% np.mean((regr.predict(X_test) - y_test) ** 2))
print('Score: %.2f' % regr.score(X_test, y_test)) # 产生用于回归问题的数据集
X_train,X_test,y_train,y_test=load_data()
# 调用 test_Lasso
test_Lasso(X_train,X_test,y_train,y_test) def test_Lasso_alpha(*data):
X_train,X_test,y_train,y_test=data
alphas=[0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,1000]
scores=[]
for i,alpha in enumerate(alphas):
regr = linear_model.Lasso(alpha=alpha)
regr.fit(X_train, y_train)
scores.append(regr.score(X_test, y_test))
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(alphas,scores)
ax.set_xlabel(r"$\alpha$")
ax.set_ylabel(r"score")
ax.set_xscale('log')
ax.set_title("Lasso")
plt.show() # 调用 test_Lasso_alpha
test_Lasso_alpha(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——Lasso回归的更多相关文章

  1. 吴裕雄 python 机器学习——逻辑回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  2. 吴裕雄 python 机器学习——ElasticNet回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  3. 吴裕雄 python 机器学习——岭回归

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...

  4. 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...

  5. 吴裕雄 python 机器学习——回归决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  6. 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  7. 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  8. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  9. 吴裕雄 python 机器学习——模型选择回归问题性能度量

    from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...

随机推荐

  1. Centos 7 修改日期和时间的命令

    timedatectl set-ntp no //关闭时间动态更新timedatectl set-time "YYYY-MM-DD HH:MM:SS" //设置时间和日期timed ...

  2. E4A 与JS交互事件无反应

    今天碰到一个问题,E4A与JS的交互,调用JS函数后,事件没有任何反应,给JS赋值,会看到浏览框中有内容显示,但是事件为什么就没反应呢. 把官方的例程打开编译试了也不行. 后来在群中问了,原来是这里设 ...

  3. fragment滑动界面

    1.代码页面 package com.example.fragment_list_copy; import android.app.FragmentManager;import android.sup ...

  4. linux下钉钉,微信

    google-chrome --app=https://im.dingtalk.com/ google-chrome --app=https://wx.qq.com/

  5. bpmn-js起步

    https://blog.csdn.net/u013253924/article/details/85784002 通过本文逐步熟悉bpmn-js. 快速介绍: bpmn.js是一个BPMN2.0渲染 ...

  6. 设计Optaplanner下实时规划服务的失败经历

    其实本文不知道算不算一个知识点分享,过程很美妙,但结果很失败.我们在利用Optaplanner的Real-Time planning(实时规则)功能,设计实时在线规划服务时,遇到一个属于Optapla ...

  7. python中类似三元表达式的写法

    python中没有其它语言中的三元表达式,如: a = x > y ? m : n; python中的类似写法为: a = 1 b = 2 h = "" h = " ...

  8. Windows自定义运行命令

    1 打开注册表regedit 2 找到:HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths 3 新增项,自己运 ...

  9. version `GLIBC_2.17' not found 解决方法

    1.先查看是哪个函数用的是GLIBC_2.17 root@emb-pc:/home/emb/temp# nm lib61850.so | grep GLIBC_2.17 U clock_gettime ...

  10. 小程序中添加客服按钮contact-button

    小程序的客服系统,是微信做的非常成功的一个功能,开发者可以很方便的通过一行代码,就可实现客服功能. 1. 普通客服按钮添加 <button open-type='contact' session ...