吴裕雄 python 机器学习——Lasso回归
import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets, linear_model
from sklearn.model_selection import train_test_split def load_data():
diabetes = datasets.load_diabetes()
return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) #Lasso回归
def test_Lasso(*data):
X_train,X_test,y_train,y_test=data
regr = linear_model.Lasso()
regr.fit(X_train, y_train)
print('Coefficients:%s, intercept %.2f'%(regr.coef_,regr.intercept_))
print("Residual sum of squares: %.2f"% np.mean((regr.predict(X_test) - y_test) ** 2))
print('Score: %.2f' % regr.score(X_test, y_test)) # 产生用于回归问题的数据集
X_train,X_test,y_train,y_test=load_data()
# 调用 test_Lasso
test_Lasso(X_train,X_test,y_train,y_test) def test_Lasso_alpha(*data):
X_train,X_test,y_train,y_test=data
alphas=[0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,1000]
scores=[]
for i,alpha in enumerate(alphas):
regr = linear_model.Lasso(alpha=alpha)
regr.fit(X_train, y_train)
scores.append(regr.score(X_test, y_test))
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(alphas,scores)
ax.set_xlabel(r"$\alpha$")
ax.set_ylabel(r"score")
ax.set_xscale('log')
ax.set_title("Lasso")
plt.show() # 调用 test_Lasso_alpha
test_Lasso_alpha(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——Lasso回归的更多相关文章
- 吴裕雄 python 机器学习——逻辑回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄 python 机器学习——ElasticNet回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄 python 机器学习——岭回归
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...
- 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——回归决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——模型选择回归问题性能度量
from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...
随机推荐
- 带查询参数 可分页 的 T-SQL 语句写法
) DECLARE @pageindex int DECLARE @pagesize int DECLARE @classid int set @keys = '' ; ; ; with temptb ...
- PCIE读书笔记
PCIE读书笔记 什么是TLP:
- ECMA6 New Features
花了一些时间把ECMA6的新特性进行了回顾,给自己建立了思维索引,大部分内容借鉴了阮一峰大神的博客. refers: http://es6.ruanyifeng.com/#docs/arraybuff ...
- [原创] JAVA 递归线程池测试 ExecutorService / ForkJoinPool
测试工具使用递归的方式获取子进程的Msg消息,目前有2种常用的ExecutorService / ForkJoinPool 为了测试哪种效果较好,我们来写个测试Demo,循环5555555次+1(加锁 ...
- 生成3位的序列号_仅仅CASE WHEN的简单应用
PNo, , ) AS sn INTO #temp1 FROM tbl_test SELECT ), sn) ), sn) ), sn) END AS sn, PNo FROM #temp1
- Redis单线程架构
参考链接: http://blog.csdn.net/qqqqq1993qqqqq/article/details/77538202 单线程模型: redis中的数据结构并不全是简单的kv,还有lis ...
- Unity GeometryShader(从一个线框渲染的例子开始)
GeometryShader这个概念,已经出现很久了,但由于性能不佳,所以使用的并不多.甚至移动平台根本就不支持.移动平台的硬件更新速度也是越来越快,GS的应用普及应该不会太远.就现阶段而言,GS来做 ...
- 错误 88 error C2248: “CObject::CObject”: 无法访问 private 成员(在“CObject”类中声明) c:\program files (x86)\microsoft visual studio 9.0\vc\atlmfc\include\afxcoll.h 590
最近接收了以前新公司遗留的代码,一个函数动不动就少的一千行,多的几千行,真是受不了这编码风格! 于是便使用了VS自带的重构工具,选择代码后右键-重构-提取方法,提取完方法就编译不过,想了好久原因,原来 ...
- Oracle表空间不足;查询表空间使用率(unable to extend lob segment SYS_LOB0000076749C00006$$ by 8192 in tablespace USERS)
查询表空间对应地址 *),) total_space from dba_data_files order by tablespace_name; //方案一:修改表空间大小(32000可改为想要的数值 ...
- Java 转JSON串
一.JSON (JavaScript Object Notation) 1.轻量级数据交换格式能够替代XML的工作 2.数据格式比较简单, 易于读写, 格式都是压缩的, 占用带宽小(简洁.简单.体积小 ...