题目链接:

https://www.lydsy.com/JudgeOnline/problem.php?id=1084

题目大意:

这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。n<=100 m<=2

思路:

m=1时,就是数组选出k个连续子段和最大。

dp[i][j]表示前i个数中已经取了j个连续子段和的最优解。

dp[i][j] = dp[i-1][j] 不取这个数

dp[i][j] = dp[start-1][j-1] + s[start]+...+s[i] 取这个数,并且从start到i作为第j个连续段(求区间和直接用前缀和求差代替)

m=2时

dp[i][j][k]表示第一列前i个数 第2列前j个数,已经取了k个子矩阵的最优解

dp[i][j][k] = max(dp[i-1][j][k], dp[i][j-1][k]) 不取这个数

dp[i][j][k] = dp[start-1][j][k-1] + s[start][1]+...+s[i][1] 第一列从start到i取出来作为第k个子矩阵

dp[i][j][k] = dp[i][start-1][k-1] + s[start][2]+...+s[i][2] 第二列从start到i取出来作为第k个子矩阵

dp[i][j][k] = dp[start-1][start-1][k-1] + s[start][1]+...+s[i][1]+s[start][2]+...+s[j][2]当且仅当i==j 两列同时取。

同样的,区间求和用前缀和快速求出。

时间复杂度为O(n^3*k)

 #include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(false);//不可再使用scanf printf
#define Max(a, b) ((a) > (b) ? (a) : (b))//禁用于函数,会超时
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Mem(a) memset(a, 0, sizeof(a))
#define Dis(x, y, x1, y1) ((x - x1) * (x - x1) + (y - y1) * (y - y1))
#define MID(l, r) ((l) + ((r) - (l)) / 2)
#define lson ((o)<<1)
#define rson ((o)<<1|1)
#define Accepted 0
#pragma comment(linker, "/STACK:102400000,102400000")//栈外挂
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} typedef long long ll;
const int maxn = + ;
const int MOD = ;//const引用更快,宏定义也更快
const int INF = 1e9 + ;
const double eps = 1e-;
int dp1[maxn][];//m = 1 dp1[i][j]表示前i个数中取了j个连续段的最大值
int dp2[maxn][maxn][];//m = 2 dp2[i][j][k]表示第一列前i个数第二列前j个数取了k个连续段的最大值
int s[maxn];
int sum[maxn][];
int main()
{
int n, m, K;
scanf("%d%d%d", &n, &m, &K);
if(m == )
{
for(int i = ; i <= n; i++)scanf("%d", &s[i]), s[i] += s[i - ];//直接记录前缀和
for(int i = ; i <= n; i++)
for(int j = ; j <= K; j++)dp1[i][j] = -INF;//dp[i][0]均为初始化的0
for(int i = ; i <= n; i++)
{
for(int j = ; j <= K; j++)
{
dp1[i][j] = dp1[i - ][j];//不取这个数字
for(int start = ; start <= i; start++)//从start开始一直取到i作为第j段
{
dp1[i][j] = max(dp1[i][j], dp1[start - ][j - ] + s[i] - s[start - ]);
}
}
}
printf("%d\n", dp1[n][K]);
}
else
{
for(int i = ; i <= n; i++)
{
for(int j = ; j <= m; j++)
{
scanf("%d", &sum[i][j]);
sum[i][j] += sum[i - ][j];//记录每一列的前缀和
}
}
for(int i = ; i <= n; i++)for(int j = ; j <= n; j++)for(int k = ; k <= K; k++)dp2[i][j][k] = -INF;
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)for(int k = ; k <= K; k++)
{
dp2[i][j][k] = max(dp2[i - ][j][k], dp2[i][j - ][k]);//不取这个数字
for(int start = ; start <= i; start++)//第一列从start开始一直取到i作为第k个矩阵
dp2[i][j][k] = max(dp2[i][j][k], dp2[start - ][j][k - ] + sum[i][] - sum[start - ][]);
for(int start = ; start <= j; start++)//第二列从start开始一直取到j作为第k个矩阵
dp2[i][j][k] = max(dp2[i][j][k], dp2[i][start - ][k - ] + sum[j][] - sum[start - ][]);
if(i == j)//两列从start开始一直取到i作为第k个矩阵
{
for(int start = ; start <= i; start++)
dp2[i][j][k] = max(dp2[i][j][k], dp2[start - ][start - ][k - ] + sum[i][] + sum[i][] - sum[start - ][] - sum[start - ][]);
}
}
printf("%d\n", dp2[n][n][K]);
}
return Accepted;
}

BZOJ 1084 最大子矩阵 dp的更多相关文章

  1. BZOJ 1084 最大子矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1084 思路:分m=1和m=2操作 #include<algorithm> #includ ...

  2. [SCOI2005][BZOJ 1084]最大子矩阵

    Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第一行为n,m,k(1≤n≤100,1≤m≤2 ...

  3. [BZOJ 1084] [SCOI2005] 最大子矩阵 【DP】

    题目链接:BZOJ - 1084 题目分析 我看的是神犇BLADEVIL的题解. 1)对于 m = 1 的情况, 首先可能不取 Map[i][1],先 f[i][k] = f[i - 1][k];   ...

  4. 【SCOI2005】 最大子矩阵 BZOJ 1084

    Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第一行为n,m,k(1≤n≤100,1≤m≤2 ...

  5. BZOJ 1084: [SCOI2005]最大子矩阵 DP

    1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...

  6. 【BZOJ 1084】 1084: [SCOI2005]最大子矩阵 (DP)

    1084: [SCOI2005]最大子矩阵 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第 ...

  7. 【BZOJ 1084】 [SCOI2005]最大子矩阵(DP)

    题链 http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩 ...

  8. bzoj 1084: [SCOI2005]最大子矩阵【dp】

    分情况讨论,m=1的时候比较简单,设f[i][j]为到i选了j个矩形,前缀和转移一下就行了 m=2,设f[i][j][k]为1行前i个,2行前j个,一共选了k个,i!=j的时候各自转移同m=1,否则转 ...

  9. BZOJ 1084 (SCOI 2005) 最大子矩阵

    1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 3560 Solved: 1779 [Submit][Sta ...

随机推荐

  1. eclipse下JAVA的搭建

    练手JAVA用eclipse比android studio快很多,android studio啥都好,就是太慢 参考资料:http://blog.csdn.net/21aspnet/article/d ...

  2. java并发编程(9)内存模型

    JAVA内存模型 在多线程这一系列中,不去探究内存模型的底层 一.什么是内存模型,为什么需要它 在现代多核处理器中,每个处理器都有自己的缓存,定期的与主内存进行协调: 想要确保每个处理器在任意时刻知道 ...

  3. 在ViewDidLoad中往导航栈推ViewController报错

     Unbalanced calls to begin/end appearance transitions for <YZPMainViewController: 0x7fa04b4970f0& ...

  4. springmvc 权限 测试版

    参考博文 https://blog.csdn.net/u011277123/article/details/68940939 1.Listener加载权限信息 2.interceptor验证权限 测试 ...

  5. WCF中的AddressHeader作用

    客户端发送请求给服务端,服务端根据请求消息把消息转发给对应的终结点.这里面有个消息筛选机制,如果请求消息中带有地址报头相关信息,则会用地址报头匹配当前的所有终结点.所以默认情况下客户端和服务端的地址报 ...

  6. C#可选参数、命名参数、参数数组

    学习了C#4.0的新特性:可选参数.命名参数.参数数组. 1.可选参数,是指给方法的特定参数指定默认值,在调用方法时可以省略掉这些参数. 但要注意: (1)可选参数不能为参数列表的第1个参数,必须位于 ...

  7. C# 日历类

    using System; namespace DotNet.Utilities { /// <summary> /// 农历属性 /// </summary> public ...

  8. [linux] C语言Linux系统编程进程基本概念

    1.如果说文件是unix系统最重要的抽象概念,那么进程仅次于文件.进程是执行中的目标代码:活动的.生存的.运行的程序. 除了目标代码进程还包含数据.资源.状态以及虚拟化的计算机. 2.进程体系: 每一 ...

  9. [C#]跨模块的可选参数与常量注意事项

    假设某个DLL里有这么一个类: // Lib.dll public class Lib { public const string VERSION = "1.0"; public ...

  10. Druid SqlParser理解及使用入门

    以前的项目中很少去思考SQL解析这个事情,即使在saas系统或者分库分表的时候有涉及到也会有专门的处理方案,这些方案也对使用者隐藏了实现细节. 而最近的这个数据项目里面却频繁涉及到了对SQL的处理,原 ...