The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K-P factorization of N for any positive integers N, K and P.

Input Specification:

Each input file contains one test case which gives in a line the three positive integers N (<=400), K (<=N) and P (1<P<=7). The numbers in a line are separated by a space.

Output Specification:

For each case, if the solution exists, output in the format:

N = n~1~\^P + ... n~K~\^P

where n~i~ (i=1, ... K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 12^2^ + 4^2^ + 2^2^ + 2^2^ + 1^2^, or 11^2^ + 6^2^ + 2^2^ + 2^2^ + 2^2^, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a~1~, a~2~, ... a~K~ } is said to be larger than { b~1~, b~2~, ... b~K~ } if there exists 1<=L<=K such that a~i~=b~i~ for i<L and a~L~>b~L~

If there is no solution, simple output "Impossible".

Sample Input 1:

169 5 2

Sample Output 1:

169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2

Sample Input 2:

169 167 3

Sample Output 2:

Impossible
题意比较好懂,容易想到dfs,但是不能纯回溯,需要剪枝,或者说按照一个非递减的顺序去试每个值,而且判断结果时满足k项就更新,因为从第一层开始,往下dfs,每一层的初始试验值都大于等于上一层的正在试验值,如果遇到跟之前一次结果相同的,序列一定比之前大。
代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
int n,k,p;
vector<int> temp,ans;
int pow_[];///把可能用到的p次方都算出来,要多算一个 这样循环结束 不至于死循环(如果算的pow_[j] 都小于n 那么最大的max(j) + 1对应pow_[j]初始为0
int pow(int t) {
int d = ;
for(int i = ;i < p;i ++) {
d *= t;
}
return d;
}
void dfs(int t,int s,int last) {///last是上一层正在尝试的 ,本次从last开始 达到非递减的目的
if(t >= k) {
if(!s) {
ans = temp;
}
return;
}
while(pow_[last] <= s) {///这里防止死循环 如果last = max(j) 保证pow_[last]能使循环结束
temp.push_back(last);
dfs(t + ,s - pow_[last],last);
temp.pop_back();
last ++;
}
}
int main() {
scanf("%d%d%d",&n,&k,&p);
int j = ,d = ;
while(d <= n) {
pow_[j ++] = d;
d = pow(j);
}
pow_[j] = d;///多算一次 不然判断会死循环
dfs(,n,);
if(ans.empty())printf("Impossible");
else {
printf("%d = %d^%d",n,ans[k - ],p);
for(int i = k - ;i >= ;i --) {
printf(" + %d^%d",ans[i],p);
}
}
}

1103 Integer Factorization (30)(30 分)的更多相关文章

  1. 【PAT】1103 Integer Factorization(30 分)

    The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...

  2. PAT 1103 Integer Factorization[难]

    1103 Integer Factorization(30 分) The K−P factorization of a positive integer N is to write N as the ...

  3. 1103 Integer Factorization (30)

    1103 Integer Factorization (30 分)   The K−P factorization of a positive integer N is to write N as t ...

  4. PAT甲级——1103 Integer Factorization (DFS)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90574720 1103 Integer Factorizatio ...

  5. PAT甲级1103. Integer Factorization

    PAT甲级1103. Integer Factorization 题意: 正整数N的K-P分解是将N写入K个正整数的P次幂的和.你应该写一个程序来找到任何正整数N,K和P的N的K-P分解. 输入规格: ...

  6. 【PAT甲级】1103 Integer Factorization (30 分)

    题意: 输入三个正整数N,K,P(N<=400,K<=N,2<=P<=7),降序输出由K个正整数的P次方和为N的等式,否则输出"Impossible". / ...

  7. 1103. Integer Factorization (30)

    The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...

  8. PAT A1103 Integer Factorization (30 分)——dfs,递归

    The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...

  9. PAT (Advanced Level) 1103. Integer Factorization (30)

    暴力搜索. #include<cstdio> #include<cstring> #include<cmath> #include<vector> #i ...

随机推荐

  1. 关于ES6的let,const与var之间的三生三世

    首先需要明确的是let.const.var都是用来定义变量的 在ES6之前,我们一般都用var来定义变量,例如 : function test(){ var i=1; console.log(i); ...

  2. Android源码及repo下载——亲自测试下载源码成功!

    经过一段时间煞费苦心的下载都未能成功后,如今终于把android源代码下载成功,很是兴奋! 废话不多说,直接说下步骤: 1.安装git和curl:sudo apt-get install git-co ...

  3. 使用MYCAT轻松实现MYSQL水平分片

    完整文章下载地址:http://download.csdn.net/detail/dreamcode/9383516 简单来说,我们能够将数据的水平切分理解为是依照数据行的切分.就是将表中的某些行切分 ...

  4. sgu 195 New Year Bonus Grant【简单贪心】

    链接: http://acm.sgu.ru/problem.php?contest=0&problem=195 http://acm.hust.edu.cn/vjudge/contest/vi ...

  5. Generally a good method to avoid this is to randomly shuffle the data prior to each epoch of training.

    http://ufldl.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/

  6. 【python】-- 初识python

    Python 安装 windows: 1.下载安装包 https://www.python.org/downloads/ 2.安装 默认安装路径:C:\python27 3.配置环境变量 [右键计算机 ...

  7. (转)Javascript模块化编程(二):AMD规范

    这个系列的第一部分介绍了Javascript模块的基本写法,今天介绍如何规范地使用模块. (接上文) 七.模块的规范 先想一想,为什么模块很重要? 因为有了模块,我们就可以更方便地使用别人的代码,想要 ...

  8. 关于VMAX中存储资源池(SRP)

    Storage Resource Pool中的相关元素 SRP由一个或多个数据池组成,这些数据池包含了预配置的数据(或TDAT)设备,可为创建和呈现给主机与应用程序的精简设备(TDEVS) 提供存储. ...

  9. 1django 视图与网址

    创建一个项目,名字叫mysite django-admin startproject mysite(项目名) 成功后,看到如下样式 mysite ├── manage.py └── mysite ├─ ...

  10. crontab 定时器

    cronntab 定时器 crontab -e 编辑定时器 crontab -l 查看定时器 //每十分钟执行一次 */10 * * * * curl http://xxxxx //每天 凌晨 中午1 ...