Description

传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同)。两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴。可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿。拿走最后一根火柴的游戏者胜利。
本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。可以一堆都不拿,但不可以全部拿走。第二回合也一样,第二个游戏者也有这样一次机会。从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样。
如果你先拿,怎样才能保证获胜?如果可以获胜的话,还要让第一回合拿的火柴总数尽量小。
 

Input

第一行为整数k。即火柴堆数。第二行包含k个不超过109的正整数,即各堆的火柴个数。
 

Output

 
输出第一回合拿的火柴数目的最小值。如果不能保证取胜,输出-1。

Sample Input

6
5 5 6 6 5 5

Sample Output

21

HINT

k<=100

可知异或和为0则必败,也就是说开头取掉几堆后,剩余集合不能出现异或为0的子集

可知就是维护一个权值和最大的线性无关组(线性基)

从大到小排序,一个个加入线性基

如果没有成功插入,那么说明该元素与其他线性相关,即可以用线性基中的子集异或和表示

这和元素的贪心很像

给出拟阵证明

我们设n个火柴堆的数目为集合S,若某个S的子集r不存在任何一个非空子集异或和0,则r∈I.下面我们证明二元组M=(S,I)是一个拟阵。
遗传性:设A∈I,则A是S的线性无关组,则A的任意非空子集均线性无关,即对A的任意子集B,B均线性无关,因此B∈I,证毕。
交换性:设A,B∈I,且|A|<|B|,我们要证明存在x∈B,使得A∪{x}∈I.利用反证法,假设对于任意x∈B-A,均有A∪{x}不属于I,则B-A中的元素均在A的异或空间中,可由A的子集异或和表示。
因此B中的元素都在A的异或空间中。那么必然有B的异或空间包含于A的异或空间。由|A|<|B|且A,B线性无关,显然矛盾。因此交换性存在,证毕。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
int P[],a[],n;
lol ans;
int add(int x)
{int i;
for (i=;i>=;i--)
if (x&(<<i))
{
if (P[i]==)
{
P[i]=x;
break;
}
x^=P[i];
}
return x;
}
int main()
{int i;
cin>>n;
for (i=;i<=n;i++)
scanf("%d",&a[i]);
sort(a+,a+n+);
for (i=n;i>=;i--)
{
if (add(a[i])==) ans+=a[i];
}
cout<<ans;
}

[CQOI2013]新Nim游戏的更多相关文章

  1. BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基

    一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...

  2. BZOJ3105: [cqoi2013]新Nim游戏

    题解: 线性基?类似于向量上的基底. 此题题解戳这里:http://blog.csdn.net/wyfcyx_forever/article/details/39477673 代码: #include ...

  3. bzoj 3105: [cqoi2013]新Nim游戏 异或高消 && 拟阵

    3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 535  Solved: 317[Submit][Stat ...

  4. 洛谷P4301 [CQOI2013]新Nim游戏

    P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...

  5. 洛谷 P4301 [CQOI2013]新Nim游戏 解题报告

    P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...

  6. 【BZOJ3105】[cqoi2013]新Nim游戏 贪心+线性基

    [BZOJ3105][cqoi2013]新Nim游戏 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个 ...

  7. BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论

    BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...

  8. [CQOI2013]新Nim游戏(线性基)

    P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...

  9. [CQOI2013]新Nim游戏(博弈论,线性基)

    [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根 ...

  10. BZOJ 3105 [CQOI2013]新Nim游戏 ——线性基

    [题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即 ...

随机推荐

  1. C语言博客-指针

    一.PTA实验作业(5分) 题目1:6-1 两个4位正整数的后两位互换 1. 本题PTA提交列表 2. 设计思路 3.代码截图 4.本题调试过程碰到问题及PTA提交列表情况说明. 无 题目2:6-3 ...

  2. raid5 / raid5e / raid5ee的性能对比及其数据恢复原理

    RAID 5 是一种存储性能.数据安全和存储成本兼顾的存储解决方案. RAID 5可以理解为是RAID 0和RAID 1的折中方案.RAID 5可以为系统提供数据安全保障,但保障程度要比Mirror低 ...

  3. sublime安装 和 插件安装

    先从官网下载sublime   https://www.sublimetext.com/3 安装完毕后 快捷键ctrl+` 或者View->Show Console,输入如下代码(sublime ...

  4. Ubuntu的软件管理与安装

    感谢燕十八,的Linux的基础进阶视频 来哥:应该是装的wineQQ,它用的12年的国际版,ubuntu的这个版本应该比较好用! [3]apt-get 用Linux apt-get命令的第一步就是引入 ...

  5. APP手机端加载不到资源服务器后台解决参考

    今天发现app登录时,报could not get resource,日志中打印的是redis相关的错误,于是开始一步步检查错误! 后台架构:redis+mysql+elk+tomcat+zookee ...

  6. Spring邮件发送2

    前言:上一篇博文讲解了邮件发送的基础用法(数据是写死的),然而在实际开发中,大多数情况下邮件内容都是根据业务来动态生成的.所以在此篇博文中,我们将讲解邮件发送携带数据的几种方案. 一.解析自定义占位符 ...

  7. 数据库 MYSQL操作(一)

    数据库  MYSQL操作总结(一) 本文主要介绍一下笔者在使用数据库操作的过程中的一些总结,主要的内容包括一下几个内容: 一.mysql 使用基础(主要包括数据库的安装.基本操作等内容) 二.mysq ...

  8. 用‘+=’拼接字符串,打印时总会出现一个undefined

    var str; for(var i = 0; i < 5; i++){ str += String(i); } console.log(str); 他喵的,打印的结果竟然是"unde ...

  9. 深度爬取之rules

    深度爬取之rules CrawlSpider使用rules来决定爬虫的爬取规则,并将匹配后的url请求提交给引擎.所以在正常情况下,CrawlSpider不需要单独手动返回请求了. 在rules中包含 ...

  10. JS刷题总结

    多总结,才能更好地进步,分享下最近的刷题总结给大家吧 关于缩减代码 1.善用js中的函数或者特性. (迭代.解构.set等等) //使用箭头函数缩减代码 //处理输入,可以用.map,需要注意其所有参 ...