题解:

首先,我们不难猜到高度只有 $0$ 或 $1$ 两种可能,而且高度为 0 的地区组成一个联通块,高度为 1 的地区组成一个联通块。只有这样,人们所耗费的体力才是最小的。
得出这个结论,题目就成了求平面图的最小割。
由于最大流等于最小割,网络流的做法是显然的,不过数据过大,不加优化是很难通过的。

我们考虑将平面图转对偶图:
我们知道平面图的最小割就等于对偶图的最短路。
本题和 bzoj1002 狼抓兔子最显著的差别就是本题的边都是有向的,而狼抓兔子的边都是无向的。
读者可以自己在草纸上画一画切割方案的 “极限” 情况,即最小割的形状是无规则的,发现对偶图中的每条边的方向恰好是原有向图的边的方向逆时针旋转 90 度。
建完图跑最短路即可。 (spfa 的话最好加一些优化)

Code:

// luogu-judger-enable-o2
#include<vector>
#include<deque>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<string>
using namespace std; typedef long long ll;
void setIO(string a){
freopen((a+".in").c_str(),"r",stdin),freopen((a+".out").c_str(),"w",stdout);
}
void end(){
fclose(stdin),fclose(stdout);
}
const int maxn=1000002;
int idx[600][600], n,s,t;
int head[maxn],to[maxn],nex[maxn],val[maxn],edges; void add_edge(int u,int v,int c){
nex[++edges]=head[u],head[u]=edges,to[edges]=v,val[edges]=c;
} long long d[maxn];
int inq[maxn];
deque<int>Q;
long long spfa()
{
memset(d,0x3f,sizeof(d));
d[s]=0,inq[s]=1;Q.push_back(s);
while(!Q.empty())
{
int u=Q.front();Q.pop_front();inq[u]=0;
for(int v=head[u];v;v=nex[v])
if(d[to[v]]>d[u]+val[v])
{
d[to[v]]=d[u]+val[v];
if(!inq[to[v]])
{
inq[to[v]]=1;
if(Q.empty()||d[Q.front()]>=d[to[v]])Q.push_front(to[v]);
else Q.push_back(to[v]);
}
}
}
return d[t];
}
int main(){
//setIO("arrangement");
scanf("%d",&n);
int cnt=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j) idx[i][j]=++cnt; s=1,t=cnt+23;
int cost;
//down->up
for(int i=1;i<=n;++i) scanf("%d",&cost),add_edge(idx[1][i],t,cost);
for(int i=1;i<n;++i)
for(int j=1;j<=n;++j) scanf("%d",&cost),add_edge(idx[i+1][j],idx[i][j],cost);
for(int i=1;i<=n;++i) scanf("%d",&cost),add_edge(s,idx[n][i],cost); //left->right
for(int i=1;i<=n;++i)
{
scanf("%d",&cost),add_edge(s,idx[i][1],cost);
for(int j=1;j<n;++j)scanf("%d",&cost),add_edge(idx[i][j],idx[i][j+1],cost);
scanf("%d",&cost),add_edge(idx[i][n],t,cost);
} //up->down
for(int i=1;i<=n;++i) scanf("%d",&cost);
for(int i=1;i<n;++i)
for(int j=1;j<=n;++j)scanf("%d",&cost),add_edge(idx[i][j],idx[i+1][j],cost);
for(int i=1;i<=n;++i) scanf("%d",&cost); //right->left
for(int i=1;i<=n;++i)
{
scanf("%d",&cost);
for(int j=1;j<n;++j) scanf("%d",&cost),add_edge(idx[i][j+1],idx[i][j],cost);
scanf("%d",&cost);
}
printf("%lld",spfa());
//end();
return 0;
}

  

[NOI2010]海拔 平面图转对偶图 最小割的更多相关文章

  1. BZOJ2007 NOI2010 海拔 平面图转对偶图 最小割

    题面太长啦,请诸位自行品尝—>海拔 分析: 这是我见过算法比较明显的最小割题目了,很明显对于某一条简单路径,海拔只会有一次变换. 而且我们要最终使变换海拔的边权值和最小. 我们发现变换海拔相当于 ...

  2. P2046 [NOI2010]海拔 平面图转对偶图(最小割-》最短路)

    $ \color{#0066ff}{ 题目描述 }$ YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作 一个正方形,每一个区域也可看作一个正方形. ...

  3. BZOJ1001 狼抓兔子 平面图转对偶图 最小割

    现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为 ...

  4. [jzoj 6092] [GDOI2019模拟2019.3.30] 附耳而至 解题报告 (平面图转对偶图+最小割)

    题目链接: https://jzoj.net/senior/#main/show/6092 题目: 知识点--平面图转对偶图 在求最小割的时候,我们可以把平面图转为对偶图,用最短路来求最小割,这样会比 ...

  5. Vijos1734 NOI2010 海拔 平面图最小割

    建立平面图的对偶图,把最小割转化成最短路问题 Dijkstra算法堆优化 (被输入顺序搞WA了好几次T_T) #include <cstdio> #include <cstring& ...

  6. Luogu2046 NOI2010 海拔 平面图、最小割、最短路

    传送门 首先一个不知道怎么证的结论:任意点的\(H\)只会是\(0\)或\(1\) 那么可以发现原题的本质就是一个最小割,左上角为\(S\),右下角为\(T\),被割开的两个部分就是\(H=0\)与\ ...

  7. 【BZOJ】1001: [BeiJing2006]狼抓兔子 Dinic算法求解平面图对偶图-最小割

    1001: [BeiJing2006]狼抓兔子 Description 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下 三种类型的道路 1:(x,y)<==>( ...

  8. NOI 2010 海拔 ——平面图转对偶图

    [题目分析] 可以知道,所有的海拔是0或1 最小割转最短路,就可以啦 SPFA被卡,只能换DIJ [代码] #include <cstdio> #include <cstring&g ...

  9. 【平面图】【最小割】【最短路】【Heap-Dijkstra】bzoj1001 [BeiJing2006]狼抓兔子

    http://wenku.baidu.com/view/8f1fde586edb6f1aff001f7d.html #include<cstdio> #include<queue&g ...

随机推荐

  1. [jzoj 5178] [NOIP2017提高组模拟6.28] So many prefix? 解题报告(KMP+DP)

    题目链接: https://jzoj.net/senior/#main/show/5178 题目: 题解: 我们定义$f[pos]$表示以位置pos为后缀的字符串对答案的贡献,答案就是$\sum_{i ...

  2. [JZOJ 5905] [NOIP2018模拟10.15] 黑暗之魂(darksoul) 解题报告 (拓扑排序+单调队列+无向图基环树)

    题目链接: http://172.16.0.132/senior/#main/show/5905 题目: oi_juruo热爱一款名叫黑暗之魂的游戏.在这个游戏中玩家要操纵一名有 点生命值的无火的余灰 ...

  3. VC6.0 设置动态链接库工程生成dll以及lib文件的位置

    在"Projet"->"Settings..."的"Link"选项卡中 "Output file name"中设置 ...

  4. sql-查看执行计划的方法

    sql执行计划:把SQL语句拆分为每个的操作步骤组合,按照一定的顺序执行得出结果,查看并看懂执行计划是调优的关键步骤 查看执行计划的方法 DBMS_XPLAN包 sql*plus AUTO trace ...

  5. 3ds Max怎么制作亮木材质的球体

    3DSMax怎么制作亮木材质的球体?3DSMax中想要设计一款亮木材质的球体,该怎么设置呢?下面我们就来看看详细的教程,需要的朋友可以参考下! 1.运行软件,选择材质编辑器图标: 3.双击拖拽出的材质 ...

  6. 每个IT安全专业人员应该知道的12种根本漏洞

    每个IT安全专业人员应该知道的12种根本漏洞 每年,IT安全专业人员都面临着数千个新的软件漏洞和数百万个不同的恶意软件程序,但只有12种根本漏洞会让这些软件漏洞和恶意软件程序攻击你的设备.了解这些根本 ...

  7. 如何发布到NPM上(转)

    简要:这篇文章介绍了如何讲自己的包发布到NPM上,马克一下,将来有用 ... npm包发布 发布npm包,更方便以后下载使用. 我们已经把插件代码上传到github上面了,那么我们是否可以也做成一个n ...

  8. 正则表达式中的/i

    i = insensitive means case-insensitive 表示大小写不敏感

  9. [arc076e]connected?

    题意: 给出一个$R\times C$的棋盘,其中$1$到$N$之间的每个正整数都会在棋盘上出现两次,第$i$个数出现的位置是$(X_{i,1},Y_{i,1})$和$(X_{i,2},Y_{i,2} ...

  10. cobbler Ubuntu16.04 安装

    cobbler vim /etc/debmirror.conf      sed -i 's/@dists=\"sid\";/#@dists=\"sid\";/ ...