算法学习——st表
st表是一种基于倍增思想的DP。
用于求一个数列中的某个区间的最大/最小值。
用st[i][j]表示从第i个开始往后2^j个点,最大的是多少。
我们令k[i]表示2^i等于多少
那么有转移方程
st[i][j] = max(st[i][j - 1], st[i + k[i - 1]][j - 1]);
为什么呢?

例如这幅图,显然黑色块的答案可以由合并下面两块得到。
那如果查询的时候不是2的整次幂怎么办?
这其实是没有问题的,你可以观察下图……

因为小区间有重叠部分并不影响,因此完全可以用稍大一点的小区间凑出大区间。
预处理一点信息以快速查询答案即可。
(早期代码,没有空格空行,略丑)
#include<bits/stdc++.h>
using namespace std;
int n,m,s[],f[][],p[];
int Max(int a,int b)
{
if(a>b)return a;
else return b;
}
int Min(int a,int b)
{
if(a<b)return a;
else return b;
}
void pre()
{
int i,a,key=;
for(i=;i<=n;i++)
{
if(i==(key<<))p[i]=p[i-]+,key<<=;
else p[i]=p[i-];
scanf("%d",&a);
f[i][]=a;
}
for(int j=;j<=;j++)
for(i=;i<=n;i++)
{
f[i][j]=Max(f[i][j-],f[Min(i+(<<(j-)),n)][j-]);
}
}
int main()
{
int i,a,b,k;
scanf("%d%d",&n,&m);
pre();
for(i=;i<=m;i++)
{
scanf("%d%d",&a,&b);
k=p[b-a+];
printf("%d\n",Max(f[a][k],f[b-(<<k)+][k]));
}
return ;
}
算法学习——st表的更多相关文章
- 算法学习 - ST表 - 稀疏表 - 解决RMQ问题
2017-08-26 21:44:45 writer:pprp RMQ问题就是区间最大最小值查询问题: 这个SparseTable算法构造一个表,F[i][j] 表示 区间[i, i + 2 ^ j ...
- [poj3264]rmq算法学习(ST表)
解题关键:rmq模板题,可以用st表,亦可用线段树等数据结构 log10和log2都可,这里用到了对数的换底公式 类似于区间dp,用到了倍增的思想 $F[i][j] = \min (F[i][j - ...
- [算法模板]ST表
[算法模板]ST表 ST表和线段树一样,都能解决RMQ问题(范围最值查询-Range Minimum Query). 我们开一个数组数组\(f[maxn][maxn\log_2]\)来储存数据. 定义 ...
- 【算法】ST表
想学习一下LCA倍增,先 水一个黄题 学一下ST表 ST表 介绍: 这是一个运用倍增思想,通过动态规划来计算区间最值的算法 算法步骤: 求出区间最值 回答询问 求出区间最值: 用f[i][j]来存储从 ...
- 【JZOJ5064】【GDOI2017第二轮模拟day2】友好城市 Kosarajo算法+bitset+ST表+分块
题面 在Byteland 一共有n 座城市,编号依次为1 到n,这些城市之间通过m 条单向公路连接. 对于两座不同的城市a 和b,如果a 能通过这些单向道路直接或间接到达b,且b 也能如此到达a,那么 ...
- [数据结构与算法-13]ST表
ST表 主要用来快速查询静态数据区间最大值 思路 数组\(A[i][j]\)存储数列\(\{a_i\}\)中区间\(i \in [i, i+2^j)\)的最大值 查询时只需要查询\(max\{A[i] ...
- RMQ算法使用ST表实现
RMQ RMQ (Range Minimum Query),指求区间最小值.普通的求区间最小值的方法是暴力. 对于一个数列: \[ A_1,~ A_2,~ A_3,~ \cdots,~ A_n \] ...
- 算法笔记--st表
概述:用倍增法求区间最值的离线算法,O(nlogn)预处理,O(1)访问. 预处理: 状态:st[i][j]:[i,i+2^j)之间的最值 状态转移:如果j等于0,st[i][j]=a[i] 如果j大 ...
- LCA 算法(一)ST表
介绍一种解决最近公共祖先的在线算法,st表,它是建立在线性中的rmq问题之上. 代码: //LCA: DFS+ST(RMQ) #include<cstdio> #include&l ...
随机推荐
- Flask初学者:视图函数和类视图
当一个url请求进入后台时,一般有两种方式来进行处理:视图函数和类视图.视图函数直接使用一个函数来进行处理并返回数据给浏览器,类视图则是使用类来进行处理并返回的,所以当需要进行的处理比较简单,则可以考 ...
- python 装饰器 生成及原里
# 装饰器形成的过程 : 最简单的装饰器 有返回值的 有一个参数 万能参数 # 装饰器的作用 # 原则 :开放封闭原则 # 语法糖 :@ # 装饰器的固定模式 #不懂技术 import time # ...
- vuls安装记录
第一步安装go环境apt-get install golang-go(显示出错,go版本apt安装太低,apt-get purge golang-go卸载后手动安装,必须1.8.3以上) 还需将/us ...
- Python自动化运维——文件与目录差异对比
Infi-chu: http://www.cnblogs.com/Infi-chu/ 模块:filecmp 安装:Python版本大于等于2.3默认自带 功能:实现文件.目录.遍历子目录的差异 常用方 ...
- SAN---第二网的概念
网络技术的优缺点:优点:连接能力,超强路由,管理能力,远距离缺点:低速以及高负载,强烈的软件需求,错误检测能力 SAN:storage area network(存储区域网络)--是一种基于光网的特殊 ...
- 带你认识Xmanager
XManager是一款小巧.便捷的浏览远端X窗口系统的工具.在工作中经常使用Xmanager来登录远端的Solaris系统,在X窗口系统上作图形化的操作.但是,Xmanager默认并不提供对于中文的支 ...
- XenServer设置master,摧毁故障主机
XenServer pool 移除server 设置master 这分为Pool Master是正常还是异常2种情况: 正常情况下可能要对Pool Master做一些停机维护,比如换内存条啥的,此时在 ...
- 纯js生成QRCode
纯js,不依赖jquery,非常好用,废话不多说,直接上代码! <!DOCTYPE html> <html> <head> <meta charset=&qu ...
- 最后一片蓝海的终极狂欢-写在Win10发布前夕
作为一名Windows8.x+系统平台从业者,从工作伊始,耳边不断充斥着Windows将走向没落的言论,Win10今日晚些时候即将发布,笔者借此机会,说说自己的看法. 早在2012年的时候,IDC曾预 ...
- 「日常训练」「小专题·图论」Domino Effect(1-5)
题意 分析 这题几乎就是一条dijkstra的问题.但是,如何考虑倒在中间? 要意识到这题求什么:单源最短路的最大值.那么有没有更大的?倒在中间有可能会使它更大. 但是要注意一个问题:不要把不存在的边 ...