51nod 1101换零钱(背包)
输入1个数N,N = 100表示1元钱。(1 <= N <= 100000)
输出Mod 10^9 + 7的结果 dp[i]表示i元有多少中表示方法。
那么dp[j] = dp[j] + dp[j-a[i]];
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 99999999
#define mod 1000000007
#define ll __int64
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define key_value ch[ch[root][1]][0]
using namespace std;
const int MAXN = ;
int a[] = {,,,,,,,,,,,,};
int dp[];
int main()
{
int n;
while(cin >>n){
memset(dp,,sizeof(dp));
dp[] = ;
for(int i = ; i < ; i++){
for(int j = a[i]; j <= n; j++){
dp[j] = (dp[j] + dp[j - a[i]])%mod;
}
}
cout<<dp[n]<<endl;
}
}
51nod 1101换零钱(背包)的更多相关文章
- 51nod 1101 换零钱 【完全背包变形/无限件可取】
1101 换零钱 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 N元钱换为零钱,有多少不同的换法?币值包括1 2 5分,1 2 5角,1 2 5 ...
- 51nod 1101 换零钱 (完全背包)
N元钱换为零钱,有多少不同的换法?币值包括1 2 5分,1 2 5角,1 2 5 10 20 50 100元. 例如:5分钱换为零钱,有以下4种换法: 1.5个1分 2.1个2分3个1分 3.2个2分 ...
- 51nod 1101 换零钱 完全背包的变型 动态规划
题目: 思路: ;i < ; i++){ for(int j = a[i];j <= n; j++){ dp[j] = (dp[j] + dp[j-a[i]])%mod; } } a[i] ...
- 51nod 1101 换零钱
基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 N元钱换为零钱,有多少不同的换法?币值包括1 2 5分,1 2 5角,1 2 5 10 20 50 100元. ...
- 51 Nod 1101 换零钱(动态规划好题)
1101 换零钱 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 N元钱换为零钱,有多少不同的换法?币值包括1 2 5分,1 2 5角,1 2 5 ...
- SDUT3145:Integer division 1(换零钱背包)
题目:传送门 题目描述 整数划分是一个非常经典的数学问题. 所谓整数划分,是指把一个正整数n写成为n=m1+m2+...+mi的形式,其中mi为正整数,并且1<=mi<=n,此时,{m1, ...
- 子集和问题(应用--换零钱)POJ2229:Sumsets
我一直在纠结换零钱这一类型的题目,今天好好絮叨一下,可以说他是背包的应用,也可以说他是单纯的dp.暂且称他为dp吧. 先上一道模板题目. sdut2777: 小P的故事——神奇的换零钱 题目描述 已知 ...
- DP优化与换零钱问题
1 当贪心不再起效的时候 对于换零钱问题,最简单也是性能最好的方法就是贪心算法.可是贪心算法一定要满足面值相邻两个零钱至少为二倍关系的前提条件.例如1,2,5,10,20……这样的零钱组应用贪心最简单 ...
- SICP 换零钱的迭代版本
看到换零钱方式统计这里, 书中给出了递归的实现但没有给出迭代版本说要留给读者作为挑战, 既然说是作为挑战那肯定是能解决的,在想了一天无果之后最终在别人博客的帮助下终于实现了迭代的版本...也算是经历坎 ...
随机推荐
- java 27 - 2 反射之 反射的概述以及获取Class文件对象的方式
反射: JAVA语言的反射机制: JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法: 对于任意一个对象,都能够调用它的任意一个方法和属性: 这种动态获取的信息以及动态调 ...
- Treap入门(转自NOCOW)
Treap 来自NOCOW Treap,就是有另一个随机数满足堆的性质的二叉搜索树,其结构相当于以随机顺序插入的二叉搜索树.其基本操作的期望复杂度为O(log n). 其特点是实现简单,效率高于伸展树 ...
- Meet Python: little notes
Source: http://www.liaoxuefeng.com/ ❤ Escape character: '\' - '\n': newline; - '\t': tab; - '\\': \; ...
- MySQL数据库的优化(下)MySQL数据库的高可用架构方案
MySQL数据库的优化(下)MySQL数据库的高可用架构方案 2011-03-09 08:53 抚琴煮酒 51CTO 字号:T | T 在上一篇MySQL数据库的优化中,我们跟随笔者学习了单机MySQ ...
- AngularJS中的身份验证
欢迎大家指导与讨论 : ) 一. 身份验证的意义 首先呢,网络应用的身份验证的意图在于:保护网站中的重要资源.基于某些原因这些资源并不能公开,比如付费资源(交过钱的用户才能上的网络课程),或者一 ...
- CentOS搭建socket5代理服务器
1.安装socket5依赖包 yum -y install gcc automake make pam-devel openldap-devel cyrus-sasl-devel 2.下载ss5并 ...
- Validate Binary Search Tree
Validate Binary Search Tree Given a binary tree, determine if it is a valid binary search tree (BST) ...
- C语言 自动修改文件名小程序
#define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #include <stri ...
- 清北学堂2017NOIP冬令营入学测试 P4744 A’s problem(a)
清北学堂2017NOIP冬令营入学测试 P4744 A's problem(a) 时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试题,每三天结算 ...
- Java并发编程实战(使用synchronized实现同步方法)
本文介绍java最基本的同步方式,即使用synchronized关键字来控制一个方法的并发访问,如果一个对象已用synchronized关键字声明,那么只有一个执行线程允许去访问它,其它试图访问这个对 ...