题目:

现在要求输入一个整数n,请你输出斐波那契数列的第n项。

斐波那契数列的定义:

f(0)=0;f(1)=1;

f(n)=f(n-1)+f(n-2)

思路:

1、递归:

根据递推公式来实现

优点:代码简单,易懂

缺点:

  • 效率低:函数递归调用过程中需要不断分配栈空间,且不断地入栈出栈,代码执行效率低;
  • 栈溢出:当递归层级太多时,会超出栈容量,导致栈溢出;
  • 复杂度高:递归调用存在大量的重复计算,时间复杂度以n的指数递增。

2、循环:

从下往上计算(动态规划),克服递归出现的缺陷

3、类似问题:

  • 青蛙跳台阶:

(1)一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶,求该青蛙跳上一个n级台阶总共有多少种跳法?

f(n)=f(n-1)+f(n-2)

f(1)=1;

f(2)=2;

(2)一只青蛙一次可以跳上1级,2级。。。n级,此时一只青蛙跳上一个n级的台阶总共有多少种跳法?

f(n)=f(n-1)+f(n-2)*2

f(1)=1;

f(2)=2;

数学归纳法证明:f(n)=2^(n-1)

  • 矩阵覆盖:

我们可以用2*1的小矩阵横着或者竖着去覆盖大的矩形,请问用8个2*1的小矩阵无重叠地覆盖一个2*8的大矩形,总共有多少种方法?

f(n)=f(n-1)+f(n-2)

f(1)=1;

f(2)=2;

代码:

#include <iostream>

using namespace std;

long long fibonacci_recursively(unsigned int n){
if(n<=0)
return 0;
if(n==1)
return 1;
return fibonacci_recursively(n-1)+fibonacci_recursively(n-2);
} long long fibonacci_iteratively(unsigned int n){
if(n<2)
return n;
long long fibNMinusOne=1;
long long fibNMinusTwo=0;
long long fibN=0;
for(unsigned int i=2;i<=n;++i){
fibN=fibNMinusOne+fibNMinusTwo;
fibNMinusTwo=fibNMinusOne;
fibNMinusOne=fibN;
}
return fibN;
} int main()
{
cout <<fibonacci_iteratively(100)<< endl;
cout <<fibonacci_recursively(100)<< endl;
return 0;
}

在线测试OJ:

http://www.nowcoder.com/books/coding-interviews/c6c7742f5ba7442aada113136ddea0c3?rp=1

AC代码:

class Solution {
public:
int Fibonacci(int n) {
if(n<2)
return n;
int fone=0;
int ftwo=1;
int fsum;
for(int i=2;i<=n;i++){
fsum=fone+ftwo;
fone=ftwo;
ftwo=fsum;
}
return fsum;
}
};

(剑指Offer)面试题9:斐波那契数列的更多相关文章

  1. 剑指Offer - 九度1387 - 斐波那契数列

    剑指Offer - 九度1387 - 斐波那契数列2013-11-24 03:08 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.斐波那契数列的定义如下: ...

  2. 剑指offer第二版-10.斐波那契数列

    面试题10:斐波那契数列 题目要求: 求斐波那契数列的第n项的值.f(0)=0, f(1)=1, f(n)=f(n-1)+f(n-2) n>1 思路:使用循环从下往上计算数列. 考点:考察对递归 ...

  3. 【剑指offer】9、斐波拉契数列

    面试题9.斐波拉契数列 题目: 输入整数n,求斐波拉契数列第n个数. 思路: 一.递归式算法: 利用f(n) = f(n-1) + f(n-2)的特性来进行递归,代码如下: 代码: long long ...

  4. 剑指offer【07】- 斐波那契数列(java)

    题目:斐波那契数列 考点:递归和循环 题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0),n<=39. 法一:递归法,不过递归比较慢, ...

  5. 剑指offer(7)斐波那契数列

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 题目分析 我们都知道斐波那契可以用递归,但是递归重复计算的部分太多了(虽然可以通过),但是这 ...

  6. 【剑指Offer】7、斐波那契数列

      题目描述:   大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).假设n<=39.   解题思路:   斐波那契数列:0,1,1,2,3, ...

  7. 【剑指offer】7:斐波那契数列

    题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0,第1项是1).假设 n≤39 解题思路: 斐波拉契数列:1,1,2,3,5,8--,总结 ...

  8. 剑指offer——矩阵覆盖(斐波那契变形)

    ****感觉都可以针对斐波那契写一个变形题目的集合了****** 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? cl ...

  9. 【剑指offer】面试题 10. 斐波那契数列

    面试题 10. 斐波那契数列 题目一:求斐波那契数列的第n项 题目描述:求斐波拉契数列的第n项 写出一个函数,输入n,求斐波拉契(Fibonacci)数列的第n项.斐波拉契数列定义如下: C++ 实现 ...

  10. 剑指offer编程题Java实现——面试题9斐波那契数列

    题目:写一个函数,输入n,求斐波那契数列的第n项. package Solution; /** * 剑指offer面试题9:斐波那契数列 * 题目:写一个函数,输入n,求斐波那契数列的第n项. * 0 ...

随机推荐

  1. PHP获取客户端请求头信息

    获取HTTP请求头信息 Apache 如果web服务器用的是apache,可以直接用php的库函数getallheaders() Nginx 如果web服务器用的是nginx,则无法直接使用getal ...

  2. 洛谷——P1894 [USACO4.2]完美的牛栏The Perfect Stall

    P1894 [USACO4.2]完美的牛栏The Perfect Stall 题目描述 农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术.不幸的是,由于工程问题,每个牛栏都不一样.第一个星 ...

  3. 图形管线之旅 Part6

    原文:<A trip through the Graphics Pipeline 2011> 翻译:往昔之剑   转载请注明出处   欢迎回来.这次我们去看看三角形的光栅化.但在光栅化三角 ...

  4. 【Java】SpringBoot入门学习及基本使用

    SpringBoot入门及基本使用 SpringBoot的介绍我就不多说了,核心的就是"约定大于配置",接下来直接上干货吧! 本文的实例: github-LPCloud,欢迎sta ...

  5. Windows下Wireshark安装版本选择方式

    Windows下Wireshark安装版本选择方式   Wireshark版本分为1.X系列和2.X系列.1.X系列是早期版本,不提供中文版本.2.X系列是新版本,安装后,同时提供中文版和英文版.根据 ...

  6. 【贪心】【堆】Gym - 101485A - Assigning Workstations

    题意:有n个人,依次来到机房,给你他们每个人的到达时间和使用时间,你给他们分配电脑,要么新开一台, 要么给他一台别人用完以后没关的.一台电脑会在停止使用M分钟后自动关闭.让你最大化不需要新开电脑的总人 ...

  7. [转]php-fpm - 启动参数及重要配置详解

    约定几个目录/usr/local/php/sbin/php-fpm/usr/local/php/etc/php-fpm.conf/usr/local/php/etc/php.ini 一,php-fpm ...

  8. python中后端数据序列化不显示中文的解决方法

    我们在前后端交互的时候,让序列化的数据更友好的显示,我们会用到 import json js = json.loads('{"name": "多多"}') pr ...

  9. Problem F: 深入浅出学算法007-统计求和

    Description 求含有数字a且不能被a整除的4位整数的个数,并求这些整数的和 Input 多组测试数据,先输入整数T表示组数然后每组输入1个整数a(1<=a<=9) Output ...

  10. 2015 UESTC 数据结构专题H题 秋实大哥打游戏 带权并查集

    秋实大哥打游戏 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/contest/show/59 Descr ...