luogu P1965 转圈游戏
题目描述
n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏。按照顺时针方向给 n 个位置编号,从0 到 n-1。最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,……,依此类推。游戏规则如下:每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,……,依此类推,第n − m号位置上的小伙伴走到第 0 号位置,第n-m+1 号位置上的小伙伴走到第 1 号位置,……,第 n-1 号位置上的小伙伴顺时针走到第m-1 号位置。
现在,一共进行了 10^k轮,请问 x 号小伙伴最后走到了第几号位置。
输入输出格式
输入格式:
输入文件名为 circle.in。
输入共 1 行,包含 4 个整数 n、m、k、x,每两个整数之间用一个空格隔开。
输出格式:
输出文件名为 circle.out。
输出共 1 行,包含 1 个整数,表示 10
k
轮后 x 号小伙伴所在的位置编号。
输入输出样例
10 3 4 5
5
说明
对于 30%的数据,0 < k < 7;
对于 80%的数据,0 < k < 10^7;
对于 100%的数据,1 <n < 1,000,000,0 < m < n,1 ≤ x ≤ n,0 < k < 10^9
就是(x+m*10^k)%n;
注意模运算的优先级
ans*=ans%n 先mod n再乘
#include<cstdio> #include<iostream>
using namespace std;
int n,m,k,x;
int qpow(int x,int y)
{
int ans=,base=x;
while(y!=)
{
if(y&!=)ans=(ans*base)%n;
base=(base*base)%n;
y>>=;
}
return ans;
}
int main()
{ cin>>n>>m>>k>>x;
cout<<(x+m*qpow(,k)%n)%n;
return ;
}
luogu P1965 转圈游戏的更多相关文章
- LUOGU P1965 转圈游戏 (Noip 2013)
传送门 解题思路 比较简单的模拟题,转圈一定有一个循环节,而且循环节长度一定小于m,因为循环节是一个%m的剩余系,然后一遍模拟记录下来循环节,快速幂即可. #include<iostream&g ...
- 洛谷 P1965 转圈游戏
洛谷 P1965 转圈游戏 传送门 思路 每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,--,依此类推,第n − m号位置上的小伙伴走到第 0 号 ...
- 洛谷P1965 转圈游戏 [2013NOIP提高组 D1T1][2017年6月计划 数论04]
P1965 转圈游戏 题目描述 n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.按照顺时针方向给 n 个位置编号,从0 到 n-1.最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 ...
- 快速幂——while理解&&[P1965] 转圈游戏
快速幂--while理解 \[a^k\] 把k转成2进制 \[k=2^n*p[n]+2^(n-1)*p[n-1]+...+2^1*p[1]+2^0*p[0]\] \[a^k=a^(2^n*p[n]+2 ...
- 洛谷 P1965 转圈游戏 —— 快速幂
题目:https://www.luogu.org/problemnew/show/P1965 居然真的就只是 ( x + m * 10k % n ) % n 代码如下: #include<ios ...
- 洛谷——P1965 转圈游戏
https://www.luogu.org/problem/show?pid=1965 题目描述 n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.按照顺时针方向给 n 个位置编号,从0 到 n- ...
- 洛谷P1965 转圈游戏 [NOIP2013]
题目描述 n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.按照顺时针方向给 n 个位置编号,从0 到 n-1.最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,……,依此 ...
- 洛谷P1965 转圈游戏
https://www.luogu.org/problem/show?pid=1965 快速幂 #include<iostream> #include<cstdio> #inc ...
- P1965 转圈游戏
很容易可以得到,答案应该是(x+m*10^k)%n 很显然,用O(n)一定会卡爆,所以用快速幂来算,或者找一下循环节也是可以的. #include <bits/stdc++.h> usin ...
随机推荐
- 【CodeForces】913 D. Too Easy Problems
[题目]D. Too Easy Problems [题意]给定n个问题和总时限T,每个问题给定时间ti和限制ai,当解决的问题数k<=ai时问题有效,求在时限T内选择一些问题解决的最大有效问题数 ...
- 【洛谷 P4072】 [SDOI2016]征途(斜率优化)
好久没写斜率优化板子都忘了, 硬是交了十几遍.. 推一下柿子就能得到答案为 \[m*\sum x^2-(\sum x)^2\] 后面是个定值,前面简单dp,斜率优化一下就行了. \(f[i][j]=f ...
- 在mac上安装ruby
1.先装RVM,一个多版本ruby环境的管理和切换工具 curl -sSL https://get.rvm.io | bash -s stable 会自动装上最新版.更新RVM版本:$ rvm get ...
- PHP代码审计学习
原文:http://paper.tuisec.win/detail/1fa2683bd1ca79c 作者:June 这是一次分享准备.自己还没有总结这个的能力,这次就当个搬运工好了~~ 0x01 工具 ...
- [002] delete_duplication_of_linked_list
[Description] Given a unsort linked list, delete all the duplication from them, no temporary space p ...
- 设计模式之笔记--享元模式(Flyweight)
享元模式(Flyweight) 定义 享元模式(Flyweight),运用共享技术有效地支持大量细粒度的对象. 类图 描述 Flyweight:抽象享元类,是所有的具体享元类的基类,为子类规定出需要实 ...
- Nginx常见错误及处理方法
转载:https://www.cnblogs.com/liyongsan/p/6795851.html 404 bad request 一般原因:请求的Header过大 解决方法:配置nginx.co ...
- java关键字(详解)
目录 1. 基本类型 1) boolean 布尔型 2) byte 字节型 3) char 字符型 4) double 双精度 5) float 浮点 6) int 整型 7) long 长整型 8) ...
- Windows内核读书笔记——SEH结构化异常处理
SEH是对windows系统中的异常分发和处理机制的总称,其实现分布在很多不同的模块中. SEH提供了终结处理和异常处理两种功能. 终结处理保证终结处理块中的程序一定会被执行 __try { //要保 ...
- JavaWeb知识回顾-servlet生命周期。
Servlet生命周期 生命周期,很容易理解,拿人来说,就是你从出生到离开的这一过程.无论是什么技术,只要谈到生命周期都可以这样理解. Servlet的生命周期就是从它被创建到毁灭的过程,整个过程可以 ...