From: KU Leuven; ESAT-STADIUS比利时鲁汶大学

?? How to model real-world multidimensional time series? especially, when these are sporadically observed data.

?? how to describe the evolution of the probability distribution of the data?  ODE dynamics.

sporadically-observed time series: sampling is irregular both in time and across dimensions.

Evaluation on both synthetic data and real-world data.

Combine GRU-ODE and GRU-Bayes into GRU-ODE-Bayes model.

Introduction: 

most methodology assumption: signals are measured systematically at fixed time intervals.

However, most real-world data is sporadic.

fixed time intervals data VS sporadic data.

How to model sporadic data becomes a challenge.

neural ordinary differential equation model; It opens the perspective of tackling the issue of irregular sampling.

interleave the ODE and the input processing steps; + GRU + Bayesian update network.

Performance metric: MSE, mean square error; NegLL, non-negative log-likelihood.

?? 可是他解决了一个什么问题还不知道,只知道 是model sporadical time series.

PP: GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series的更多相关文章

  1. PP: Modeling extreme events in time series prediction

    KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...

  2. PP: Extracting statisticla graph features for accurate and efficient time series classification

    Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...

  3. PP: Shape and time distortion loss for training deep time series forecasting models

    Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple futu ...

  4. Simulation of empirical Bayesian methods (using baseball statistics)

    Previously in this series: The beta distribution Empirical Bayes estimation Credible intervals The B ...

  5. Applied Spatiotemporal Data Mining应用时空数据挖掘

    Course descriptionWith the continuing advances of geographic information science and geospatialtechn ...

  6. Distance dependent Chinese Restaurant Processes

    Here is a note of Distance dependent Chinese Restaurant Processes 文章链接http://pan.baidu.com/s/1dEk7ZA ...

  7. [Fundamental of Power Electronics]-PART I-3.稳态等效电路建模,损耗和效率-3.2 考虑电感铜损

    3.2 考虑电感铜损 可以拓展图3.3的直流变压器模型,来对变换器的其他属性进行建模.通过添加电阻可以模拟如功率损耗的非理想因素.在后面的章节,我们将通过在等效电路中添加电感和电容来模拟变换器动态. ...

  8. 论文阅读 DyREP:Learning Representations Over Dynamic Graphs

    5 DyREP:Learning Representations Over Dynamic Graphs link:https://scholar.google.com/scholar_url?url ...

  9. PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network

    PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...

随机推荐

  1. Girlfreind:1 Vulnhub Walkthrough

    靶机链接: https://www.vulnhub.com/entry/me-and-my-girlfriend-1,409/ 主机扫描: HTTP 目录访问,提示无权限,右键源码,提示XXF即可 正 ...

  2. JS中函数的本质,定义、调用,以及函数的参数和返回值

    要用面向对象的方式去编程,而不要用面向过程的方式去编程 对象是各种类型的数据的集合,可以是数字.字符串.数组.函数.对象…… 对象中的内容以键值对方式进行存储 对象要赋值给一个变量 var cat={ ...

  3. 如何阻止a标签跳转

    <a href="www.baidu.com">百度</a> 上面为我们的a标签,要想阻止它进行跳转我们该怎么办呢? 当然我们有以下的几种办法_______ ...

  4. request.getParameterMap获取不到数据问题

    最近在做javaweb项目的过程中发现使用request.getParameterMap( )方法获取jsp页面中的表单数据的时候发现获取不到,检查了好长时间最后发现问题是在jsp页面中. reque ...

  5. em和rem区别

    em大小依据父元素的字体大小的倍数 rem大小依据与根元素,即html标签的font-size大小

  6. vue(二)--条件语句

    条件语句:v-if     v-else   v-else-if    v-show v-else .v-else-if 必须跟在 v-if 或者 v-else-if之后. 1.v-if <bo ...

  7. 42.通过原生SQL语句进行操纵mysql数据库

    views.py文件中: from django.shortcuts import render # 导入connection模块 from django.db import connection d ...

  8. centos7&python3.6uwsgi安装

    yum install python3-devel.x86_64 pip install uwsgi

  9. HTML5视频(自定义视频播放器源码)

    video对象 兼容情况: safari浏览器不支持webm格式 Chrome浏览器支持webm格式 ie8以及以下不支持video标签 , ie9支持video标签 ,但是支持mp4格式的 Fire ...

  10. linux基础之Mini Linux制作

    一.编译一个简单的linux步骤如下: # yum groupinstall ""Development Tools" "Server Platform Dev ...