From: KU Leuven; ESAT-STADIUS比利时鲁汶大学

?? How to model real-world multidimensional time series? especially, when these are sporadically observed data.

?? how to describe the evolution of the probability distribution of the data?  ODE dynamics.

sporadically-observed time series: sampling is irregular both in time and across dimensions.

Evaluation on both synthetic data and real-world data.

Combine GRU-ODE and GRU-Bayes into GRU-ODE-Bayes model.

Introduction: 

most methodology assumption: signals are measured systematically at fixed time intervals.

However, most real-world data is sporadic.

fixed time intervals data VS sporadic data.

How to model sporadic data becomes a challenge.

neural ordinary differential equation model; It opens the perspective of tackling the issue of irregular sampling.

interleave the ODE and the input processing steps; + GRU + Bayesian update network.

Performance metric: MSE, mean square error; NegLL, non-negative log-likelihood.

?? 可是他解决了一个什么问题还不知道,只知道 是model sporadical time series.

PP: GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series的更多相关文章

  1. PP: Modeling extreme events in time series prediction

    KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...

  2. PP: Extracting statisticla graph features for accurate and efficient time series classification

    Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...

  3. PP: Shape and time distortion loss for training deep time series forecasting models

    Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple futu ...

  4. Simulation of empirical Bayesian methods (using baseball statistics)

    Previously in this series: The beta distribution Empirical Bayes estimation Credible intervals The B ...

  5. Applied Spatiotemporal Data Mining应用时空数据挖掘

    Course descriptionWith the continuing advances of geographic information science and geospatialtechn ...

  6. Distance dependent Chinese Restaurant Processes

    Here is a note of Distance dependent Chinese Restaurant Processes 文章链接http://pan.baidu.com/s/1dEk7ZA ...

  7. [Fundamental of Power Electronics]-PART I-3.稳态等效电路建模,损耗和效率-3.2 考虑电感铜损

    3.2 考虑电感铜损 可以拓展图3.3的直流变压器模型,来对变换器的其他属性进行建模.通过添加电阻可以模拟如功率损耗的非理想因素.在后面的章节,我们将通过在等效电路中添加电感和电容来模拟变换器动态. ...

  8. 论文阅读 DyREP:Learning Representations Over Dynamic Graphs

    5 DyREP:Learning Representations Over Dynamic Graphs link:https://scholar.google.com/scholar_url?url ...

  9. PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network

    PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...

随机推荐

  1. JS正则表达式的创建、匹配字符串、转义、字符类、重复以及常用字符

    正则表达式都是操作字符串的 作用:对数据进行查找.替换.有效性验证 创建正则表达式的两种方式: // 字面量方式 /js/ // 构造函数方式 regular expression new RegEx ...

  2. centos7下查看mysql配置文件适用顺序

    mysql --help|grep 'my.cnf' [root@izm5e2q95pbpe1hh0kkwoiz ~]# mysql --help|grep 'my.cnf' order of pre ...

  3. 关于在Spring项目中使用thymeleaf报Exception parsing document错误

    今天在使用SpringBoot的过程中,SpringBoot版本为1.5.18.RELEASE,访问thymeleaf引擎的html页面报错Exception parsing document: 这是 ...

  4. 浅谈python的第三方库——numpy(三)

    numpy库中矩阵的常用方法 1 矩阵转置 从上图可以看出:使用方法a.T可以将矩阵a转置. 2 均值与方差 注意:方法a.mean()会对矩阵a的所有元素求均值,a.var()也是考虑矩阵a的所有元 ...

  5. Wannafly Winter Camp 2020 Day 5F Inversion Pairs - 拉格朗日插值,dp

    给定 \(n \leq 10^7\),求所有 \(n\) 的全排列的逆序对个数的 \(k \leq 100\) 次方和 Solution \(f[i][j]\) 表示 \(i\) 个元素,逆序对个数为 ...

  6. Redis-03-集群搭建

    基于redis-3.2.4的Redis-Cluster集群搭建 原理 Redis 集群采用了P2P的模式,完全去中心化.Redis 把所有的 Key 分成了 16384 个 slot,每个 Redis ...

  7. C#最基本的Socket编程

    示例程序是同步套接字程序,功能很简单,只是客户端发给服务器一条信息,服务器向客户端返回一条信息,是一个简单示例,也是一个最基本的socket编程流程. 简单步骤说明: 1.用指定的port, ip 建 ...

  8. Java输入和输出数组(加逗号)

    输入示例 61,2,3,4,5,6 输出示例 1,2,3,4,5,61,2,3,4,5,6 import java.util.Scanner; public class Demo01 { public ...

  9. 复习babel

    对babel进行复习

  10. jQuery笔记(五)jQuery表单验证

    前言 上次我们说完jQuery中的动画之后,我们再来看一种jQuery在Web网页应用最为广泛的一种形式,这就是jQuery对表单的操作,通过jQuery对表单的操作,可以有效的提高用户体验.在此之前 ...