PP: GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
From: KU Leuven; ESAT-STADIUS比利时鲁汶大学
?? How to model real-world multidimensional time series? especially, when these are sporadically observed data.
?? how to describe the evolution of the probability distribution of the data? ODE dynamics.
sporadically-observed time series: sampling is irregular both in time and across dimensions.
Evaluation on both synthetic data and real-world data.
Combine GRU-ODE and GRU-Bayes into GRU-ODE-Bayes model.
Introduction:
most methodology assumption: signals are measured systematically at fixed time intervals.
However, most real-world data is sporadic.
fixed time intervals data VS sporadic data.
How to model sporadic data becomes a challenge.
neural ordinary differential equation model; It opens the perspective of tackling the issue of irregular sampling.
interleave the ODE and the input processing steps; + GRU + Bayesian update network.
Performance metric: MSE, mean square error; NegLL, non-negative log-likelihood.
?? 可是他解决了一个什么问题还不知道,只知道 是model sporadical time series.
PP: GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series的更多相关文章
- PP: Modeling extreme events in time series prediction
KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...
- PP: Extracting statisticla graph features for accurate and efficient time series classification
Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...
- PP: Shape and time distortion loss for training deep time series forecasting models
Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple futu ...
- Simulation of empirical Bayesian methods (using baseball statistics)
Previously in this series: The beta distribution Empirical Bayes estimation Credible intervals The B ...
- Applied Spatiotemporal Data Mining应用时空数据挖掘
Course descriptionWith the continuing advances of geographic information science and geospatialtechn ...
- Distance dependent Chinese Restaurant Processes
Here is a note of Distance dependent Chinese Restaurant Processes 文章链接http://pan.baidu.com/s/1dEk7ZA ...
- [Fundamental of Power Electronics]-PART I-3.稳态等效电路建模,损耗和效率-3.2 考虑电感铜损
3.2 考虑电感铜损 可以拓展图3.3的直流变压器模型,来对变换器的其他属性进行建模.通过添加电阻可以模拟如功率损耗的非理想因素.在后面的章节,我们将通过在等效电路中添加电感和电容来模拟变换器动态. ...
- 论文阅读 DyREP:Learning Representations Over Dynamic Graphs
5 DyREP:Learning Representations Over Dynamic Graphs link:https://scholar.google.com/scholar_url?url ...
- PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network
PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...
随机推荐
- JS正则表达式的创建、匹配字符串、转义、字符类、重复以及常用字符
正则表达式都是操作字符串的 作用:对数据进行查找.替换.有效性验证 创建正则表达式的两种方式: // 字面量方式 /js/ // 构造函数方式 regular expression new RegEx ...
- centos7下查看mysql配置文件适用顺序
mysql --help|grep 'my.cnf' [root@izm5e2q95pbpe1hh0kkwoiz ~]# mysql --help|grep 'my.cnf' order of pre ...
- 关于在Spring项目中使用thymeleaf报Exception parsing document错误
今天在使用SpringBoot的过程中,SpringBoot版本为1.5.18.RELEASE,访问thymeleaf引擎的html页面报错Exception parsing document: 这是 ...
- 浅谈python的第三方库——numpy(三)
numpy库中矩阵的常用方法 1 矩阵转置 从上图可以看出:使用方法a.T可以将矩阵a转置. 2 均值与方差 注意:方法a.mean()会对矩阵a的所有元素求均值,a.var()也是考虑矩阵a的所有元 ...
- Wannafly Winter Camp 2020 Day 5F Inversion Pairs - 拉格朗日插值,dp
给定 \(n \leq 10^7\),求所有 \(n\) 的全排列的逆序对个数的 \(k \leq 100\) 次方和 Solution \(f[i][j]\) 表示 \(i\) 个元素,逆序对个数为 ...
- Redis-03-集群搭建
基于redis-3.2.4的Redis-Cluster集群搭建 原理 Redis 集群采用了P2P的模式,完全去中心化.Redis 把所有的 Key 分成了 16384 个 slot,每个 Redis ...
- C#最基本的Socket编程
示例程序是同步套接字程序,功能很简单,只是客户端发给服务器一条信息,服务器向客户端返回一条信息,是一个简单示例,也是一个最基本的socket编程流程. 简单步骤说明: 1.用指定的port, ip 建 ...
- Java输入和输出数组(加逗号)
输入示例 61,2,3,4,5,6 输出示例 1,2,3,4,5,61,2,3,4,5,6 import java.util.Scanner; public class Demo01 { public ...
- 复习babel
对babel进行复习
- jQuery笔记(五)jQuery表单验证
前言 上次我们说完jQuery中的动画之后,我们再来看一种jQuery在Web网页应用最为广泛的一种形式,这就是jQuery对表单的操作,通过jQuery对表单的操作,可以有效的提高用户体验.在此之前 ...