PP: GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
From: KU Leuven; ESAT-STADIUS比利时鲁汶大学
?? How to model real-world multidimensional time series? especially, when these are sporadically observed data.
?? how to describe the evolution of the probability distribution of the data? ODE dynamics.
sporadically-observed time series: sampling is irregular both in time and across dimensions.
Evaluation on both synthetic data and real-world data.
Combine GRU-ODE and GRU-Bayes into GRU-ODE-Bayes model.
Introduction:
most methodology assumption: signals are measured systematically at fixed time intervals.
However, most real-world data is sporadic.
fixed time intervals data VS sporadic data.
How to model sporadic data becomes a challenge.
neural ordinary differential equation model; It opens the perspective of tackling the issue of irregular sampling.
interleave the ODE and the input processing steps; + GRU + Bayesian update network.
Performance metric: MSE, mean square error; NegLL, non-negative log-likelihood.
?? 可是他解决了一个什么问题还不知道,只知道 是model sporadical time series.
PP: GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series的更多相关文章
- PP: Modeling extreme events in time series prediction
KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...
- PP: Extracting statisticla graph features for accurate and efficient time series classification
Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...
- PP: Shape and time distortion loss for training deep time series forecasting models
Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple futu ...
- Simulation of empirical Bayesian methods (using baseball statistics)
Previously in this series: The beta distribution Empirical Bayes estimation Credible intervals The B ...
- Applied Spatiotemporal Data Mining应用时空数据挖掘
Course descriptionWith the continuing advances of geographic information science and geospatialtechn ...
- Distance dependent Chinese Restaurant Processes
Here is a note of Distance dependent Chinese Restaurant Processes 文章链接http://pan.baidu.com/s/1dEk7ZA ...
- [Fundamental of Power Electronics]-PART I-3.稳态等效电路建模,损耗和效率-3.2 考虑电感铜损
3.2 考虑电感铜损 可以拓展图3.3的直流变压器模型,来对变换器的其他属性进行建模.通过添加电阻可以模拟如功率损耗的非理想因素.在后面的章节,我们将通过在等效电路中添加电感和电容来模拟变换器动态. ...
- 论文阅读 DyREP:Learning Representations Over Dynamic Graphs
5 DyREP:Learning Representations Over Dynamic Graphs link:https://scholar.google.com/scholar_url?url ...
- PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network
PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...
随机推荐
- ES6 - 基础学习(8): Promise 对象
概述 Promise是异步编程的一种解决方案,比传统的解决方案(多层嵌套回调.回调函数和事件)更强大也更合理.从语法上说,Promise是一个对象,从它可以获取异步操作的消息,Promise 还提供了 ...
- fancybox图片灯箱功能
fancybox图片灯箱功能 在页面中引入几个文件 <script src="https://cdn.jsdelivr.net/npm/jquery@3.4.1/dist/jquery ...
- 升级了NinjaLoveFish Excel量化表格
为了方便查看均价和止盈值,新建了两列 这样做的好处就是,针对一个股票,可以实现不同的多个网格布局,然后分别实现各自的盈利设定. 例如这是网格1 那么同时也可以存在网格2 就可以实现多个网格布局到一个股 ...
- 【算法】蓝桥杯 试题 基础练习 Huffuman树
资源限制 时间限制:1.0s 内存限制:512.0MB 问题描述 Huffman树在编码中有着广泛的应用.在这里,我们只关心Huffman树的构造过程. 给出一列数{pi}={p0, p1, …, ...
- Nginx-4.Nginx如何处理请求
原文 基于server_name 的虚拟站点 Nginx首先需要确定使用哪个server来处理请求.举个简单的例子,有下面几个server 第一个,监听80端口,为org站点 server { lis ...
- C#实现Excel操作——添加页签Sheet
C#实现对Excel操作,根据数据的类型不同或者来源不同会放在不同的页签中,C#实现添加页签代码如下:(path为文档保存的地址,dt为要处理的源数据) public void addSheet(st ...
- 10.python内置模块之os模块
os模块的作用:os 模块提供了非常丰富的方法用来处理文件和目录(管理和维护目录以及文件). os.path模块的作用:主要用于获取文件的属性(管理路径的(物理地址)). 小生总结了一些平时常用到的属 ...
- P3983 赛斯石(赛后强化版)
链接:Miku ------------- 题目描述一脸懵逼 ------------ 这道题本质上是两个完全背包而已.首先,对于每个船,他所能装的最大货物价值是一定的, 我们可以跑完全背包求出每艘船 ...
- UESTC 1324 卿学姐与公主 分块板子
#include<iostream> #include<cmath> using namespace std; ; //表示当前数在哪一块里面 int belong[maxn] ...
- springboot打成jar包并携带第三方jar
1.修改打包方式为jar <packaging>jar</packaging> 2.添加第三方依赖到pom文件 我的第三方依赖包在resources目录下的lib目录下(地址可 ...