Effective TensorFlow Chapter 4: TensorFlow中的广播Broadcast机制【转】
本文转载自:https://blog.csdn.net/LoseInVain/article/details/78763303
TensorFlow支持广播机制(Broadcast),可以广播元素间操作(elementwise operations)。正常情况下,当你想要进行一些操作如加法,乘法时,你需要确保操作数的形状是相匹配的,如:你不能将一个具有形状[3, 2]的张量和一个具有[3,4]形状的张量相加。但是,这里有一个特殊情况,那就是当你的其中一个操作数是一个具有单独维度(singular dimension)的张量的时候,TF会隐式地在它的单独维度方向填满(tile),以确保和另一个操作数的形状相匹配。所以,对一个[3,2]的张量和一个[3,1]的张量相加在TF中是合法的。(译者:这个机制继承自numpy的广播功能。其中所谓的单独维度就是一个维度为1,或者那个维度缺失,具体可参考numpy broadcast)。
import tensorflow as tf
a = tf.constant([[1., 2.], [3., 4.]])
b = tf.constant([[1.], [2.]])
# c = a + tf.tile(b, [1, 2])
c = a + b
- 1
- 2
- 3
- 4
- 5
- 6
广播机制允许我们在隐式情况下进行填充(tile),而这可以使得我们的代码更加简洁,并且更有效率地利用内存,因为我们不需要另外储存填充操作的结果。一个可以表现这个优势的应用场景就是在结合具有不同长度的特征向量的时候。为了拼接具有不同长度的特征向量,我们一般都先填充输入向量,拼接这个结果然后进行之后的一系列非线性操作等。这是一大类神经网络架构的共同套路(common pattern)
a = tf.random_uniform([5, 3, 5])
b = tf.random_uniform([5, 1, 6])
# concat a and b and apply nonlinearity
tiled_b = tf.tile(b, [1, 3, 1])
c = tf.concat([a, tiled_b], 2)
d = tf.layers.dense(c, 10, activation=tf.nn.relu)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
但是这个可以通过广播机制更有效地完成。我们利用事实f(m(x+y))=f(mx+my)f(m(x+y))=f(mx+my),简化我们的填充操作。因此,我们可以分离地进行这个线性操作,利用广播机制隐式地完成拼接操作。
pa = tf.layers.dense(a, 10, activation=None)
pb = tf.layers.dense(b, 10, activation=None)
d = tf.nn.relu(pa + pb)
- 1
- 2
- 3
事实上,这个代码足够通用,并且可以在具有抽象形状(arbitrary shape)的张量间应用:
def merge(a, b, units, activation=tf.nn.relu):
pa = tf.layers.dense(a, units, activation=None)
pb = tf.layers.dense(b, units, activation=None)
c = pa + pb
if activation is not None:
c = activation(c)
return c
- 1
- 2
- 3
- 4
- 5
- 6
- 7
一个更为通用函数形式如上所述:
目前为止,我们讨论了广播机制的优点,但是同样的广播机制也有其缺点,隐式假设几乎总是使得调试变得更加困难,考虑下面的例子:
a = tf.constant([[1.], [2.]])
b = tf.constant([1., 2.])
c = tf.reduce_sum(a + b)
- 1
- 2
- 3
你猜这个结果是多少?如果你说是6,那么你就错了,答案应该是12.这是因为当两个张量的阶数不匹配的时候,在进行元素间操作之前,TF将会自动地在更低阶数的张量的第一个维度开始扩展,所以这个加法的结果将会变为[[2, 3], [3, 4]],所以这个reduce的结果是12.
(译者:答案详解如下,第一个张量的shape为[2, 1],第二个张量的shape为[2,]。因为从较低阶数张量的第一个维度开始扩展,所以应该将第二个张量扩展为shape=[2,2],也就是值为[[1,2], [1,2]]。第一个张量将会变成shape=[2,2],其值为[[1, 1], [2, 2]]。)
解决这种麻烦的方法就是尽可能地显示使用。我们在需要reduce某些张量的时候,显式地指定维度,然后寻找这个bug就会变得简单:
a = tf.constant([[1.], [2.]])
b = tf.constant([1., 2.])
c = tf.reduce_sum(a + b, 0)
- 1
- 2
- 3
这样,c的值就是[5, 7],我们就容易猜到其出错的原因。一个更通用的法则就是总是在reduce操作和在使用tf.squeeze中指定维度。
Effective TensorFlow Chapter 4: TensorFlow中的广播Broadcast机制【转】的更多相关文章
- Android 中的广播(Broadcast)
Android 广播(broadcast) 饮水思源 本文章内容学习和总结自 郭霖大神:<Android第一行代码> Overview 就像我们的学校里的喇叭一样,是用来通知的.而Andr ...
- Android中的广播Broadcast详解
今天来看一下Android中的广播机制,我们知道广播Broadcast是Android中的四大组件之一,可见他的重要性了,当然它的用途也很大的,比如一些系统的广播:电量低.开机.锁屏等一些操作都会发送 ...
- Numpy中的广播原则(机制)
为了了解这个原则,首先我们来看一组例子: # 数组直接对一个数进行加减乘除,产生的结果是数组中的每个元素都会加减乘除这个数. In [12]: import numpy as np In [13]: ...
- tensorflow官方文档中的sub 和mul中的函数已经在API中改名了
在照着tensorflow 官方文档和极客学院中tensorflow中文文档学习tensorflow时,遇到下面的两个问题: 1)AttributeError: module 'tensorflow' ...
- tensorflow在文本处理中的使用——Doc2Vec情感分析
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——Word2Vec预测
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——CBOW词嵌入模型
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——skip-gram模型
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——TF-IDF算法
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
随机推荐
- Guideline 2.1 - Information Needed
For information about testing your app and preparing it for review, please see Technical Note TN2431 ...
- 审核被拒绝。附近??Guideline 5.1.2
5. 1.2 Legal: Privacy - Data Use and Sharing Guideline 5.1.2 - Legal - Privacy - Data Use and Sharin ...
- es fielddata理解
在es中,text类型的字段使用一种叫做fielddata的查询时内存数据结构.当字段被排序,聚合或者通过脚本访问时这种数据结构会被创建.它是通过从磁盘读取每个段的整个反向索引来构建的,然后存存储在j ...
- 《javascript算法--对象的比较》
方法一:JSON.stringify() 此方法简单,适用于当两个对象的属性顺序相同的时候. var user1 = {name : "nerd", org: "dev& ...
- SqlServer--bat批处理执行sql语句1-osql
首先需要知道,此处使用的批处理命令是osql ,如果安装了SqlServer,目录类似: D:\Program Files\Microsoft SQL Server\100\Tools\Binn 脚本 ...
- 搭建私有yum仓库
需要工具: centos7 nginx rsync 新建文件夹存放镜像数据 mkdir /data mkdir /data/yum_data 同步数据 国内开源镜像站没有几个支持rsync,科技大学的 ...
- 批量生成反色图片,用PHOTOSHOP批处理功能。
http://zhidao.baidu.com/link?url=Iz46PDPnEITummTEwo2GtUrK6AeAjlidJ7HtCPJ6NYZJbbllRwNg2iBAcNwF2TYjccP ...
- iOS 自定义日志输出
在做iOS开发过程中,我们经常需要输出日志来查看某些数据是否打印出来,或者查看查个类是否被调用了. 系统默认的是NSLog(@"xxxx %d",1) ,但如果该APP要发布到商店 ...
- 软件包管理:rpm命令管理-包命名与依赖性
rpm包的管理主要有两种方法:一种是rpm命令管理另一种是yum在线管理 注意软件包没有扩展名,写上只是为了好看,便于识别而已. 注意区别包名,包全名.之所以要区分,就是因为有些命令十分挑剔,需要跟正 ...
- Java基础语法(基本语句)
Java基础语法 标识符在程序中自定义的一些名称.由26个英文字母大小写,数字:0-9符号:_&组成定义合法标识符规则:1. 数字不可以开头2. 不可以使用关键字Java中 ...