matlab(2) Logistic Regression: 画出样本数据点plotData
画出data数据
data数据
34.62365962451697,78.0246928153624,0
30.28671076822607,43.89499752400101,0
35.84740876993872,72.90219802708364,0
60.18259938620976,86.30855209546826,1
79.0327360507101,75.3443764369103,1
45.08327747668339,56.3163717815305,0
61.10666453684766,96.51142588489624,1
75.02474556738889,46.55401354116538,1
76.09878670226257,87.42056971926803,1
84.43281996120035,43.53339331072109,1
ex2.m文件
%% Initialization(灰色代表注释)
clear ; close all; clc (clear: Clear variables and functions from memory; close: close figure; clc: Clear command window.)
%% Load Data
% The first two columns contains the exam scores and the third column
% contains the label.
data = load('ex2data1.txt');
X = data(:, [1, 2]); y = data(:, 3); (取data的第一列至第二列给X,取data的第三列给y)
%% ==================== Part 1: Plotting ====================
% We start the exercise by first plotting the data to understand the
% the problem we are working with.
fprintf(['Plotting data with + indicating (y = 1) examples and o ' ... (...表示与下一行相连)
'indicating (y = 0) examples.\n']);
plotData(X, y); (调用函数plotData(X,y),参见下面的plotData.m)
% Put some labels
hold on; (保持住现有的plot和所有的坐标属性,包括颜色和线条的style)
% Labels and Legend
xlabel('Exam 1 score') (给x轴加上label)
ylabel('Exam 2 score') (给y轴加上label)
% Specified in plot order
legend('Admitted', 'Not admitted') (给两种不同的点的标记加说明)
hold off; (hold 关闭)
fprintf('\nProgram paused. Press enter to continue.\n');
pause; (暂停运行,等待用户响应pause causes a procedure to stop and wait for the user to strike any key before continue)
plotData.m文件
function plotData(X, y) (在文件的开头应写上新定义的function,文件的名称(plotData.m)中的plotData应与function的名称一至)
%PLOTDATA Plots the data points X and y into a new figure
% PLOTDATA(x,y) plots the data points with + for the positive examples
% and o for the negative examples. X is assumed to be a Mx2 matrix.
% Create New Figure
figure; hold on; (figure:创建一个figure 窗口)
% ====================== YOUR CODE HERE ======================
% Instructions: Plot the positive and negative examples on a
% 2D plot, using the option 'k+' for the positive
% examples and 'ko' for the negative examples.
%
% Find indices of positive and negative example
pos = find(y==1); neg = find(y==0); (返回所有y==1的点的线性序列(linear indices (如上述data则返回(4,5,7,8,9,10)))
%plot example
plot(X(pos,1), X(pos,2), 'k+', 'LineWidth', 2, 'MarkerSize', 7); (将相应序列对应的X矩阵的元素画出(如第4行的第一列的值做为x轴的值,第4行的第二列的值做为y轴的值); k+表示线的颜色为黑色(black),形状为+; MarkerSize 表示+形状的大小 )
plot(X(neg,1), X(neg,2), 'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 7); (MarkerFaceColor: 表示填充在o里面的颜色为黄色)
% =========================================================================
hold off;
end (表示plotData(X, y)函数的结束)

matlab(2) Logistic Regression: 画出样本数据点plotData的更多相关文章
- matlab(3) Logistic Regression: 求cost 和gradient \ 求sigmoid的值
sigmoid.m文件 function g = sigmoid(z)%SIGMOID Compute sigmoid functoon% J = SIGMOID(z) computes the si ...
- matlab(4) Logistic regression:求θ的值使用fminunc / 画decision boundary(直线)plotDecisionBoundary
画decision boundary(直线) %% ============= Part 3: Optimizing using fminunc =============% In this exer ...
- MATLAB 统计数据并画出统计直方图
统计FilmTrust(0.5-4.0分).CiaoDVD(1-5分).MovieLens(1-5分) 等 rating 数据集分值的分布: 以 统计FilmTrust(0.5-4.0分) 为例: ...
- Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization
原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- week3编程作业: Logistic Regression中一些难点的解读
%% ============ Part : Compute Cost and Gradient ============ % In this part of the exercise, you wi ...
- matlab(6) Regularized logistic regression : plot data(画样本图)
Regularized logistic regression : plot data(画样本图) ex2data2.txt 0.051267,0.69956,1-0.092742,0.68494, ...
- Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...
- matlab(7) Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg
Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg ex2_reg.m文件中的部分内容 %% == ...
- matlab(8) Regularized logistic regression : 不同的λ(0,1,10,100)值对regularization的影响,对应不同的decision boundary\ 预测新的值和计算模型的精度predict.m
不同的λ(0,1,10,100)值对regularization的影响\ 预测新的值和计算模型的精度 %% ============= Part 2: Regularization and Accur ...
随机推荐
- 与TypeScript的一场美丽邂逅
TypeScript(一)前言:当你点开这篇文章时,我相信你已经在很多地方都已经听说过或者见过TypeScript了.但是可能对TypeScript依然有很多问号:TypeScript到底是什么?为什 ...
- LeetCode 145. 二叉树的后序遍历(Binary Tree Postorder Traversal)
145. 二叉树的后序遍历 145. Binary Tree Postorder Traversal 题目描述 给定一个二叉树,返回它的 后序 遍历. LeetCode145. Binary Tree ...
- Java常用命令:jps、jstack、jmap、jstat(带有实例教程)
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u013310517/article/details/80990924 查看Java进程:jps ...
- springboot之Redis
1.springboot之Redis配置 在学习springboot配置Redis之前先了解Redis. 1.了解Redis Redis简介: redis是一个key-value存储系统.和Memca ...
- Hystrix【参数配置及缓存】
1.常用参数说明 hystrix参数的详细配置可参照 https://github.com/Netflix/Hystrix/wiki/Configuration 下面是一些常用的配置: 配置项 默认值 ...
- 剑指offer66:机器人的运动范围
1 题目描述 地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子. 例如,当k为18时,机器 ...
- Python学习路线图【转载】
文章来源:https://blog.csdn.net/u014044812/article/details/88079011
- flannel overlay网络浅析
Flannel基于UDP的网络实现 container-1的route表信息如下(b1): default via 100.96.1.1 dev eth0 100.96.1.0/24 dev eth0 ...
- sublime text3 关闭更新提醒
Preferences->settings 在Preferences.sublime-setting --User中 增加: "update_check":false,
- java 线程实现、线程暂停和终止 、线程联合join、线程基本信息获取和设置、线程优先级
转载地址:速学堂 https://www.sxt.cn/Java_jQuery_in_action/eleven-inheritthread.html 1. 通过继承Thread类实现多线程 继承Th ...