import numpy as np

from matplotlib import  pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.neural_network import MLPClassifier def creat_data(n):
'''
创建线性可分数据集 :param n: 正例样本的个数(同时也是负例样本的个数)
:return: 返回一个线性可分数据集,数据集大小为 2*n
'''
np.random.seed(1)
x_11=np.random.randint(0,100,(n,1)) # 第一组:第一维坐标值
x_12=np.random.randint(0,100,(n,1,))# 第一组:第二维坐标值
x_13=20+np.random.randint(0,10,(n,1,))#第一组: 第三维坐标值
x_21=np.random.randint(0,100,(n,1)) # 第二组:第一维坐标值
x_22=np.random.randint(0,100,(n,1)) # 第二组:第二维坐标值
x_23=10-np.random.randint(0,10,(n,1,)) # 第二组:第三维坐标值 new_x_12=x_12*np.sqrt(2)/2-x_13*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_13=x_12*np.sqrt(2)/2+x_13*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_22=x_22*np.sqrt(2)/2-x_23*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_23=x_22*np.sqrt(2)/2+x_23*np.sqrt(2)/2## 沿第一维轴旋转45度 plus_samples=np.hstack([x_11,new_x_12,new_x_13,np.ones((n,1))]) # 拼接成正例数据集
minus_samples=np.hstack([x_21,new_x_22,new_x_23,-np.ones((n,1))]) # 拼接成负例数据集
samples=np.vstack([plus_samples,minus_samples]) # 拼接成完整数据集
np.random.shuffle(samples) # 混洗数据
return samples def creat_data_no_linear(n):
'''
创建线性不可分数据集 :param n: 正例样本的个数(同时也是负例样本的个数)
:return: 返回一个线性不可分数据集,数据集大小为 2*n
'''
np.random.seed(1)
x_11=np.random.randint(0,100,(n,1))# 第一组:第一维坐标值
x_12=np.random.randint(0,100,(n,1,))# 第一组:第二维坐标值
x_13=10+np.random.randint(0,10,(n,1,))#第一组: 第三维坐标值
x_21=np.random.randint(0,100,(n,1))# 第二组:第一维坐标值
x_22=np.random.randint(0,100,(n,1))# 第二组:第二维坐标值
x_23=20-np.random.randint(0,10,(n,1,)) # 第二组:第三维坐标值 new_x_12=x_12*np.sqrt(2)/2-x_13*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_13=x_12*np.sqrt(2)/2+x_13*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_22=x_22*np.sqrt(2)/2-x_23*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_23=x_22*np.sqrt(2)/2+x_23*np.sqrt(2)/2## 沿第一维轴旋转45度 plus_samples=np.hstack([x_11,new_x_12,new_x_13,np.ones((n,1))])# 拼接成正例数据集
minus_samples=np.hstack([x_21,new_x_22,new_x_23,-np.ones((n,1))])# 拼接成负例数据集
samples=np.vstack([plus_samples,minus_samples])# 拼接成完整数据集
np.random.shuffle(samples) # 混洗数据
return samples def plot_samples(ax,samples):
'''
绘制样本点 :param ax: 绘制图形所在的 Axes
:param samples: 样本数据集
:return: None
'''
Y=samples[:,-1] # 标记信息
position_p=Y==1 ## 正类位置
position_m=Y==-1 ## 负类位置
# 绘制正类样本点
ax.scatter(samples[position_p,0],samples[position_p,1],samples[position_p,2],marker='+',label='+',color='b')
# 绘制负类样本点
ax.scatter(samples[position_m,0],samples[position_m,1],samples[position_m,2],marker='^',label='-',color='y')
def run_plot_samples():
'''
绘制线性可分数据集 :return: None
'''
fig=plt.figure()
ax=Axes3D(fig)
data=creat_data(100) # 产生线性可分数据集
plot_samples(ax,data)
ax.legend(loc='best')
plt.show() run_plot_samples()

def run_plot_samples_no_linear():
'''
绘制线性不可分数据集 :return: None
'''
data=creat_data_no_linear(100)# 产生线性不可分数据集
fig=plt.figure()
ax=Axes3D(fig)
plot_samples(ax,data)
ax.legend(loc='best')
plt.show() run_plot_samples_no_linear()

def perceptron(train_data,eta,w_0,b_0):
'''
感知机的原始算法 :param train_data: 训练数据集
:param eta: 学习率
:param w_0: 初始权重向量
:param b_0: 初始的 b
:return: 一个元组,依次为:最终的权重向量,最终的 b 值,迭代次数
'''
x=train_data[:,:-1] # x 数据
y=train_data[:,-1] # 对应的标记
length= train_data.shape[0] #样本集大小
w=w_0
b=b_0
step_num=0
while True:
i=0
while(i< length): ## 遍历一轮样本集中的所有的样本点
step_num+=1
'''
当应用于线性不可分数据集时,用下面4行代替上面的 step_num+=1 这一行。如果不这么做,那么当用于线性
不可分数据集时,迭代永远不会停止。
step_num+=1
if step_num>=10000000:
print("failed!,step_num =%d"%step_num)
return
'''
x_i=x[i].reshape((x.shape[1],1)) # 变成列向量,因为需要执行 np.dot 函数
y_i=y[i]
if y_i*(np.dot(np.transpose(w),x_i)+b) <=0: # 该点是误分类点
w=w+eta*y_i*x_i # 梯度下降
b=b+eta*y_i # 梯度下降
break # 执行下一轮筛选
else:#该点不是误分类点,选取下一个样本点
i=i+1
if(i== length): #没有误分类点,结束循环
break
return (w,b,step_num) def creat_hyperplane(x,y,w,b):
'''
创建分离超平面 :param x: 分离超平面上的点的x坐标组成的数组
:param y: 分离超平面上的点的y坐标组成的数组
:param w: 超平面的法向量,它是一个列向量
:param b: 超平面的截距
:return: 分离超平面上的点的z坐标组成的数组
'''
return (-w[0][0]*x-w[1][0]*y-b)/w[2][0] # w0*x+w1*y+w2*z+b=0
def run_perceptron():
'''
对线性可分数据集执行感知机的原始算法并绘制分离超平面
'''
data=creat_data(100) #产生线性可分数据集
eta,w_0,b_0=0.1,np.ones((3,1),dtype=float),1 # 初始化 学习率、权重、 b
w,b,num=perceptron(data,eta,w_0,b_0) # 执行感知机的原始形式
### 绘图
fig=plt.figure()
plt.suptitle("perceptron")
ax=Axes3D(fig) ### 绘制样本点
plot_samples(ax,data) ## 绘制分离超平面
x=np.linspace(-30,100,100) # 分离超平面的 x坐标数组
y=np.linspace(-30,100,100) # 分离超平面的 y坐标数组
x,y=np.meshgrid(x,y) # 划分网格
z=creat_hyperplane(x,y,w,b) # 分离超平面的 z坐标数组
ax.plot_surface(x, y, z, rstride=1, cstride=1,color='g',alpha=0.2) ax.legend(loc="best")
plt.show() run_perceptron()

def perceptron_nolinear(train_data,eta,w_0,b_0):
'''
感知机的原始算法 :param train_data: 训练数据集
:param eta: 学习率
:param w_0: 初始权重向量
:param b_0: 初始的 b
:return: 一个元组,依次为:最终的权重向量,最终的 b 值,迭代次数
'''
x=train_data[:,:-1] # x 数据
y=train_data[:,-1] # 对应的标记
length= train_data.shape[0] #样本集大小
w=w_0
b=b_0
step_num=0
while True:
i=0
while(i< length): ## 遍历一轮样本集中的所有的样本点
step_num+=1
if step_num>=10000000:
print("failed!,step_num =%d"%step_num)
return
x_i=x[i].reshape((x.shape[1],1)) # 变成列向量,因为需要执行 np.dot 函数
y_i=y[i]
if y_i*(np.dot(np.transpose(w),x_i)+b) <=0: # 该点是误分类点
w=w+eta*y_i*x_i # 梯度下降
b=b+eta*y_i # 梯度下降
break # 执行下一轮筛选
else:#该点不是误分类点,选取下一个样本点
i=i+1
if(i== length): #没有误分类点,结束循环
break
return (w,b,step_num) def creat_hyperplane(x,y,w,b):
'''
创建分离超平面 :param x: 分离超平面上的点的x坐标组成的数组
:param y: 分离超平面上的点的y坐标组成的数组
:param w: 超平面的法向量,它是一个列向量
:param b: 超平面的截距
:return: 分离超平面上的点的z坐标组成的数组
'''
return (-w[0][0]*x-w[1][0]*y-b)/w[2][0] # w0*x+w1*y+w2*z+b=0
def run_perceptron_no_linear():
'''
对线性不可分数据集执行感知机的元素算法
'''
data=creat_data_no_linear(100)#产生线性不可分数据集
perceptron_nolinear(data,eta=0.1,w_0=np.zeros((3,1)),b_0=0) run_perceptron_no_linear()

def creat_w(train_data,alpha):
'''
根据训练数据集和 alpha向量 创建 权重向量 :param train_data: 训练数据集
:param alpha: alpha 向量
:return: 权重向量
'''
x=train_data[:,:-1] # x 数据
y=train_data[:,-1] # 对应的分类
N= train_data.shape[0] #样本集大小
w=np.zeros((x.shape[1],1))
for i in range(0,N):
w=w+alpha[i][0]*y[i]*(x[i].reshape(x[i].size,1))
return w
def perceptron_dual(train_data,eta,alpha_0,b_0):
'''
感知机的对偶形式算法 :param train_data: 训练数据集
:param eta: 学习率
:param alpha_0: 初始的 alpha 向量
:param b_0: 初始的 b 值
:return: 一个元组,依次为:最终的alpha 向量、最终的 b 值、迭代次数
'''
x=train_data[:,:-1] # x 数据
y=train_data[:,-1] # 对应的分类
length= train_data.shape[0] #样本集大小
alpha=alpha_0
b=b_0
step_num=0
while True:
i=0
while(i< length):
step_num+=1
x_i=x[i].reshape((x.shape[1],1)) # 变形为列向量,因为需要调用 np.dot
y_i=y[i]
w=creat_w(train_data,alpha)
z=y_i*(np.dot(np.transpose(w),x_i)+b)
if z <=0: # 该点是误分类点
alpha[i][0]+=eta # 梯度下降
b+=eta*y_i # 梯度下降
break # 梯度下降了,从头开始,执行下一轮筛选
else:
i=i+1 #该点不是误分类点,选取下一个样本点
if(i== length ): #没有误分类点,结束循环
break
return (alpha,b,step_num) def run_perceptron_dual():
'''
对线性可分数据集执行感知机的原始算法和对偶形式算法,并绘制分离超平面
'''
data=creat_data(100)
eta,w_0,b_0=0.1,np.ones((3,1),dtype=float),1
w_1,b_1,num_1=perceptron(data,eta,w_0,b_0) ##执行原始形式的算法
alpha,b_2,num_2=perceptron_dual(data,eta=0.1,alpha_0=np.zeros((data.shape[0]*2,1)),
b_0=0) # 执行对偶形式的算法
w_2=creat_w(data,alpha) print("w_1,b_1",w_1,b_1)
print("w_2,b_2",w_2,b_2) ## 绘图
fig=plt.figure()
plt.suptitle("perceptron")
ax=Axes3D(fig) ### 绘制样本点
plot_samples(ax,data) ## 绘制分离超平面
x=np.linspace(-30,100,100) # 分离超平面的 x坐标数组
y=np.linspace(-30,100,100) # 分离超平面的 y坐标数组
x,y=np.meshgrid(x,y) # 划分网格
z=creat_hyperplane(x,y,w_1,b_1) # 原始形式算法的分离超平面的 z坐标数组
z_2=creat_hyperplane(x,y,w_2,b_2) # 对偶形式算法的分离超平面的 z坐标数组
ax.plot_surface(x, y, z, rstride=1, cstride=1,color='g',alpha=0.2)
ax.plot_surface(x, y, z_2, rstride=1, cstride=1,color='c',alpha=0.2)
ax.legend(loc="best")
plt.show() run_perceptron_dual()

def test_eta(data,ax,etas,w_0,alpha_0,b_0):
'''
测试学习率对于感知机两种形式算法的收敛速度的影响 :param data: 训练数据集
:param ax: Axes实例,负责绘制图形
:param etas: 候选的学习率的值组成的列表
:param w_0: 原始算法用到的初始权重向量
:param alpha_0: 对偶形式用到的初始 alpha 向量
:param b_0: 初始 b 值
:return: None
'''
nums1=[]
nums2=[]
for eta in etas:
_,_,num_1=perceptron(data,eta,w_0=w_0,b_0=b_0) # 获取原始形式算法的迭代次数
_,_,num_2=perceptron_dual(data,eta=0.1,alpha_0=alpha_0,b_0=b_0) # 获取对偶形式算法的迭代次数
nums1.append(num_1)
nums2.append(num_2)
ax.plot(etas,np.array(nums1),label='orignal iteraton times')
ax.plot(etas,np.array(nums2),label='dual iteraton times') def run_test_eta():
fig=plt.figure()
fig.suptitle("perceptron")
ax=fig.add_subplot(1,1,1)
ax.set_xlabel(r'$\eta$') data=creat_data(20) # 创建线性可分数据集
etas=np.linspace(0.01,1,num=25,endpoint=False)
w_0,b_0,alpha_0=np.ones((3,1)),0,np.zeros((data.shape[0],1))
test_eta(data,ax,etas,w_0,alpha_0,b_0) ax.legend(loc="best",framealpha=0.5)
plt.show() run_test_eta()

吴裕雄 python 机器学习——人工神经网络与原始感知机模型的更多相关文章

  1. 吴裕雄 python 机器学习——人工神经网络感知机学习算法的应用

    import numpy as np from matplotlib import pyplot as plt from sklearn import neighbors, datasets from ...

  2. 吴裕雄 python 机器学习——等度量映射Isomap降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  3. 吴裕雄 python 机器学习——多维缩放降维MDS模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  4. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  5. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  6. 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  7. 吴裕雄 python 机器学习——局部线性嵌入LLE降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  8. 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...

  9. 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型

    from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...

随机推荐

  1. spring整合websocket,如何在服务端依赖注入service

    1.在pom.xml文件中添加jar包: <properties> <spring.version>4.0.5.RELEASE</spring.version> & ...

  2. 题解【洛谷P2264】情书

    题面 看到每一单词在同一句话中出现多次感动值不叠加,一眼想到 \(\text{set}\). 首先将词汇列表中的单词存储起来,我用的是 \(\text{set}\). 对于每一个句子的单词,我们可以先 ...

  3. "换行"和"回车"的来历

    \r: return 到当前行的最左边. \n: newline 向下移动一行,并不移动左右. Linux中\n表示:回车+换行: Windows中\r\n表示:回车+换行. Mac中\r表示:回车+ ...

  4. phpstorm对比代码

    方法一 首先在phpstorm中左侧的资源管理器中,按住键盘上的CTRL键选中两个文件,然后鼠标右键,点击菜单中的"Compare Tow Files",就可以了,如下图 方法二 ...

  5. JUC-线程间通信

    面试题: 两个线程,一个线程打印1-52,另一个打印字母A-Z打印顺序为12A34B...5152Z, 要求用线程间通信 线程间通信:1.生产者+消费者2.通知等待唤醒机制 多线程编程模版中 1.判断 ...

  6. 使用API进行文件读写——CreateFile,ReadFile,WriteFile等

    看了这个帖子:  http://www.vbgood.com/thread-99249-1-1.html  就写了一个使用API读写文件的简单类,苦力活.  演示代码在附件里.  '********* ...

  7. Windows下解决github push failed (remote: Permission to userA/XXXX.git denied to userB.) 上传gitHub失败报错

    Windows环境下解决 github push failed (remote: Permission to userA/XXXX.git denied to userB.) · 初学GitHub的朋 ...

  8. java课后作业2

    动手动脑 编写一个方法,使用以上算法生成指定数目(比如1000个)的随机整数 import java.util.Random;import java.util.Scanner;public class ...

  9. 在Ubuntu 18.04上安装Git

    步骤1.首先,通过运行以下命令确保您的系统和apt包列表完全更新: apt-get update -yapt-get upgrade -y 第2步.在Ubuntu 18.04上安装Git. 现在让我们 ...

  10. linux异常 - 无法分配内存

    解决方案: 删除虚拟机上不必要的东西 重启开虚拟机的电脑