import numpy as np

from matplotlib import  pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.neural_network import MLPClassifier def creat_data(n):
'''
创建线性可分数据集 :param n: 正例样本的个数(同时也是负例样本的个数)
:return: 返回一个线性可分数据集,数据集大小为 2*n
'''
np.random.seed(1)
x_11=np.random.randint(0,100,(n,1)) # 第一组:第一维坐标值
x_12=np.random.randint(0,100,(n,1,))# 第一组:第二维坐标值
x_13=20+np.random.randint(0,10,(n,1,))#第一组: 第三维坐标值
x_21=np.random.randint(0,100,(n,1)) # 第二组:第一维坐标值
x_22=np.random.randint(0,100,(n,1)) # 第二组:第二维坐标值
x_23=10-np.random.randint(0,10,(n,1,)) # 第二组:第三维坐标值 new_x_12=x_12*np.sqrt(2)/2-x_13*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_13=x_12*np.sqrt(2)/2+x_13*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_22=x_22*np.sqrt(2)/2-x_23*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_23=x_22*np.sqrt(2)/2+x_23*np.sqrt(2)/2## 沿第一维轴旋转45度 plus_samples=np.hstack([x_11,new_x_12,new_x_13,np.ones((n,1))]) # 拼接成正例数据集
minus_samples=np.hstack([x_21,new_x_22,new_x_23,-np.ones((n,1))]) # 拼接成负例数据集
samples=np.vstack([plus_samples,minus_samples]) # 拼接成完整数据集
np.random.shuffle(samples) # 混洗数据
return samples def creat_data_no_linear(n):
'''
创建线性不可分数据集 :param n: 正例样本的个数(同时也是负例样本的个数)
:return: 返回一个线性不可分数据集,数据集大小为 2*n
'''
np.random.seed(1)
x_11=np.random.randint(0,100,(n,1))# 第一组:第一维坐标值
x_12=np.random.randint(0,100,(n,1,))# 第一组:第二维坐标值
x_13=10+np.random.randint(0,10,(n,1,))#第一组: 第三维坐标值
x_21=np.random.randint(0,100,(n,1))# 第二组:第一维坐标值
x_22=np.random.randint(0,100,(n,1))# 第二组:第二维坐标值
x_23=20-np.random.randint(0,10,(n,1,)) # 第二组:第三维坐标值 new_x_12=x_12*np.sqrt(2)/2-x_13*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_13=x_12*np.sqrt(2)/2+x_13*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_22=x_22*np.sqrt(2)/2-x_23*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_23=x_22*np.sqrt(2)/2+x_23*np.sqrt(2)/2## 沿第一维轴旋转45度 plus_samples=np.hstack([x_11,new_x_12,new_x_13,np.ones((n,1))])# 拼接成正例数据集
minus_samples=np.hstack([x_21,new_x_22,new_x_23,-np.ones((n,1))])# 拼接成负例数据集
samples=np.vstack([plus_samples,minus_samples])# 拼接成完整数据集
np.random.shuffle(samples) # 混洗数据
return samples def plot_samples(ax,samples):
'''
绘制样本点 :param ax: 绘制图形所在的 Axes
:param samples: 样本数据集
:return: None
'''
Y=samples[:,-1] # 标记信息
position_p=Y==1 ## 正类位置
position_m=Y==-1 ## 负类位置
# 绘制正类样本点
ax.scatter(samples[position_p,0],samples[position_p,1],samples[position_p,2],marker='+',label='+',color='b')
# 绘制负类样本点
ax.scatter(samples[position_m,0],samples[position_m,1],samples[position_m,2],marker='^',label='-',color='y')
def run_plot_samples():
'''
绘制线性可分数据集 :return: None
'''
fig=plt.figure()
ax=Axes3D(fig)
data=creat_data(100) # 产生线性可分数据集
plot_samples(ax,data)
ax.legend(loc='best')
plt.show() run_plot_samples()

def run_plot_samples_no_linear():
'''
绘制线性不可分数据集 :return: None
'''
data=creat_data_no_linear(100)# 产生线性不可分数据集
fig=plt.figure()
ax=Axes3D(fig)
plot_samples(ax,data)
ax.legend(loc='best')
plt.show() run_plot_samples_no_linear()

def perceptron(train_data,eta,w_0,b_0):
'''
感知机的原始算法 :param train_data: 训练数据集
:param eta: 学习率
:param w_0: 初始权重向量
:param b_0: 初始的 b
:return: 一个元组,依次为:最终的权重向量,最终的 b 值,迭代次数
'''
x=train_data[:,:-1] # x 数据
y=train_data[:,-1] # 对应的标记
length= train_data.shape[0] #样本集大小
w=w_0
b=b_0
step_num=0
while True:
i=0
while(i< length): ## 遍历一轮样本集中的所有的样本点
step_num+=1
'''
当应用于线性不可分数据集时,用下面4行代替上面的 step_num+=1 这一行。如果不这么做,那么当用于线性
不可分数据集时,迭代永远不会停止。
step_num+=1
if step_num>=10000000:
print("failed!,step_num =%d"%step_num)
return
'''
x_i=x[i].reshape((x.shape[1],1)) # 变成列向量,因为需要执行 np.dot 函数
y_i=y[i]
if y_i*(np.dot(np.transpose(w),x_i)+b) <=0: # 该点是误分类点
w=w+eta*y_i*x_i # 梯度下降
b=b+eta*y_i # 梯度下降
break # 执行下一轮筛选
else:#该点不是误分类点,选取下一个样本点
i=i+1
if(i== length): #没有误分类点,结束循环
break
return (w,b,step_num) def creat_hyperplane(x,y,w,b):
'''
创建分离超平面 :param x: 分离超平面上的点的x坐标组成的数组
:param y: 分离超平面上的点的y坐标组成的数组
:param w: 超平面的法向量,它是一个列向量
:param b: 超平面的截距
:return: 分离超平面上的点的z坐标组成的数组
'''
return (-w[0][0]*x-w[1][0]*y-b)/w[2][0] # w0*x+w1*y+w2*z+b=0
def run_perceptron():
'''
对线性可分数据集执行感知机的原始算法并绘制分离超平面
'''
data=creat_data(100) #产生线性可分数据集
eta,w_0,b_0=0.1,np.ones((3,1),dtype=float),1 # 初始化 学习率、权重、 b
w,b,num=perceptron(data,eta,w_0,b_0) # 执行感知机的原始形式
### 绘图
fig=plt.figure()
plt.suptitle("perceptron")
ax=Axes3D(fig) ### 绘制样本点
plot_samples(ax,data) ## 绘制分离超平面
x=np.linspace(-30,100,100) # 分离超平面的 x坐标数组
y=np.linspace(-30,100,100) # 分离超平面的 y坐标数组
x,y=np.meshgrid(x,y) # 划分网格
z=creat_hyperplane(x,y,w,b) # 分离超平面的 z坐标数组
ax.plot_surface(x, y, z, rstride=1, cstride=1,color='g',alpha=0.2) ax.legend(loc="best")
plt.show() run_perceptron()

def perceptron_nolinear(train_data,eta,w_0,b_0):
'''
感知机的原始算法 :param train_data: 训练数据集
:param eta: 学习率
:param w_0: 初始权重向量
:param b_0: 初始的 b
:return: 一个元组,依次为:最终的权重向量,最终的 b 值,迭代次数
'''
x=train_data[:,:-1] # x 数据
y=train_data[:,-1] # 对应的标记
length= train_data.shape[0] #样本集大小
w=w_0
b=b_0
step_num=0
while True:
i=0
while(i< length): ## 遍历一轮样本集中的所有的样本点
step_num+=1
if step_num>=10000000:
print("failed!,step_num =%d"%step_num)
return
x_i=x[i].reshape((x.shape[1],1)) # 变成列向量,因为需要执行 np.dot 函数
y_i=y[i]
if y_i*(np.dot(np.transpose(w),x_i)+b) <=0: # 该点是误分类点
w=w+eta*y_i*x_i # 梯度下降
b=b+eta*y_i # 梯度下降
break # 执行下一轮筛选
else:#该点不是误分类点,选取下一个样本点
i=i+1
if(i== length): #没有误分类点,结束循环
break
return (w,b,step_num) def creat_hyperplane(x,y,w,b):
'''
创建分离超平面 :param x: 分离超平面上的点的x坐标组成的数组
:param y: 分离超平面上的点的y坐标组成的数组
:param w: 超平面的法向量,它是一个列向量
:param b: 超平面的截距
:return: 分离超平面上的点的z坐标组成的数组
'''
return (-w[0][0]*x-w[1][0]*y-b)/w[2][0] # w0*x+w1*y+w2*z+b=0
def run_perceptron_no_linear():
'''
对线性不可分数据集执行感知机的元素算法
'''
data=creat_data_no_linear(100)#产生线性不可分数据集
perceptron_nolinear(data,eta=0.1,w_0=np.zeros((3,1)),b_0=0) run_perceptron_no_linear()

def creat_w(train_data,alpha):
'''
根据训练数据集和 alpha向量 创建 权重向量 :param train_data: 训练数据集
:param alpha: alpha 向量
:return: 权重向量
'''
x=train_data[:,:-1] # x 数据
y=train_data[:,-1] # 对应的分类
N= train_data.shape[0] #样本集大小
w=np.zeros((x.shape[1],1))
for i in range(0,N):
w=w+alpha[i][0]*y[i]*(x[i].reshape(x[i].size,1))
return w
def perceptron_dual(train_data,eta,alpha_0,b_0):
'''
感知机的对偶形式算法 :param train_data: 训练数据集
:param eta: 学习率
:param alpha_0: 初始的 alpha 向量
:param b_0: 初始的 b 值
:return: 一个元组,依次为:最终的alpha 向量、最终的 b 值、迭代次数
'''
x=train_data[:,:-1] # x 数据
y=train_data[:,-1] # 对应的分类
length= train_data.shape[0] #样本集大小
alpha=alpha_0
b=b_0
step_num=0
while True:
i=0
while(i< length):
step_num+=1
x_i=x[i].reshape((x.shape[1],1)) # 变形为列向量,因为需要调用 np.dot
y_i=y[i]
w=creat_w(train_data,alpha)
z=y_i*(np.dot(np.transpose(w),x_i)+b)
if z <=0: # 该点是误分类点
alpha[i][0]+=eta # 梯度下降
b+=eta*y_i # 梯度下降
break # 梯度下降了,从头开始,执行下一轮筛选
else:
i=i+1 #该点不是误分类点,选取下一个样本点
if(i== length ): #没有误分类点,结束循环
break
return (alpha,b,step_num) def run_perceptron_dual():
'''
对线性可分数据集执行感知机的原始算法和对偶形式算法,并绘制分离超平面
'''
data=creat_data(100)
eta,w_0,b_0=0.1,np.ones((3,1),dtype=float),1
w_1,b_1,num_1=perceptron(data,eta,w_0,b_0) ##执行原始形式的算法
alpha,b_2,num_2=perceptron_dual(data,eta=0.1,alpha_0=np.zeros((data.shape[0]*2,1)),
b_0=0) # 执行对偶形式的算法
w_2=creat_w(data,alpha) print("w_1,b_1",w_1,b_1)
print("w_2,b_2",w_2,b_2) ## 绘图
fig=plt.figure()
plt.suptitle("perceptron")
ax=Axes3D(fig) ### 绘制样本点
plot_samples(ax,data) ## 绘制分离超平面
x=np.linspace(-30,100,100) # 分离超平面的 x坐标数组
y=np.linspace(-30,100,100) # 分离超平面的 y坐标数组
x,y=np.meshgrid(x,y) # 划分网格
z=creat_hyperplane(x,y,w_1,b_1) # 原始形式算法的分离超平面的 z坐标数组
z_2=creat_hyperplane(x,y,w_2,b_2) # 对偶形式算法的分离超平面的 z坐标数组
ax.plot_surface(x, y, z, rstride=1, cstride=1,color='g',alpha=0.2)
ax.plot_surface(x, y, z_2, rstride=1, cstride=1,color='c',alpha=0.2)
ax.legend(loc="best")
plt.show() run_perceptron_dual()

def test_eta(data,ax,etas,w_0,alpha_0,b_0):
'''
测试学习率对于感知机两种形式算法的收敛速度的影响 :param data: 训练数据集
:param ax: Axes实例,负责绘制图形
:param etas: 候选的学习率的值组成的列表
:param w_0: 原始算法用到的初始权重向量
:param alpha_0: 对偶形式用到的初始 alpha 向量
:param b_0: 初始 b 值
:return: None
'''
nums1=[]
nums2=[]
for eta in etas:
_,_,num_1=perceptron(data,eta,w_0=w_0,b_0=b_0) # 获取原始形式算法的迭代次数
_,_,num_2=perceptron_dual(data,eta=0.1,alpha_0=alpha_0,b_0=b_0) # 获取对偶形式算法的迭代次数
nums1.append(num_1)
nums2.append(num_2)
ax.plot(etas,np.array(nums1),label='orignal iteraton times')
ax.plot(etas,np.array(nums2),label='dual iteraton times') def run_test_eta():
fig=plt.figure()
fig.suptitle("perceptron")
ax=fig.add_subplot(1,1,1)
ax.set_xlabel(r'$\eta$') data=creat_data(20) # 创建线性可分数据集
etas=np.linspace(0.01,1,num=25,endpoint=False)
w_0,b_0,alpha_0=np.ones((3,1)),0,np.zeros((data.shape[0],1))
test_eta(data,ax,etas,w_0,alpha_0,b_0) ax.legend(loc="best",framealpha=0.5)
plt.show() run_test_eta()

吴裕雄 python 机器学习——人工神经网络与原始感知机模型的更多相关文章

  1. 吴裕雄 python 机器学习——人工神经网络感知机学习算法的应用

    import numpy as np from matplotlib import pyplot as plt from sklearn import neighbors, datasets from ...

  2. 吴裕雄 python 机器学习——等度量映射Isomap降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  3. 吴裕雄 python 机器学习——多维缩放降维MDS模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  4. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  5. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  6. 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  7. 吴裕雄 python 机器学习——局部线性嵌入LLE降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  8. 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...

  9. 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型

    from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...

随机推荐

  1. 网络编程UDP、TCP详解

    网络编程   网络编程主要用于解决计算机与计算机(手机.平板-)之间的数据传输问题. 1.InetAddress(IP类)   方法: 方法 描述 getLocalHost() 获取本机的IP地址对象 ...

  2. AntDesign(React)学习-9 Dva model reducer实践

    今天肺炎增长数字依然吓人,感觉穿越到丧失片里了. 本节开始学习dva model使用,官网的讲解太文档化,对新手实践不太友好,自己简化了一个最简单的演示代码. 1.在src,models文件夹下创建u ...

  3. android 如何查看socket、websocket通信数据 抓包

    怎么使用可以自行百度

  4. HDU-2036 改革春风吹满地 (数学)

    Problem Description "改革春风吹满地,不会AC没关系;实在不行回老家,还有一亩三分地.谢谢!(乐队奏乐)" 话说部分学生心态极好,每天就知道游戏,这次考试如此简 ...

  5. JS高级---案例:验证表单

    案例:验证表单 <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...

  6. [JZOJ5060] 公路建设

    题目描述 在Byteland一共有n个城市,编号依次为1到n,它们之间计划修建m条双向道路,其中修建第i条道路的费用为ci. Byteasar作为Byteland公路建设项目的总工程师,他决定选定一个 ...

  7. 部署Discuz和wordoress

    安装discuz 直接把安装包拷贝到根目录下 然后在浏览器中输入http://localhost/myweb/install/index.php 打开安装向导界面,需要修改一下myweb的权限 安全属 ...

  8. asp.net中正则表达式使用

    一.限定符:限定符提供了一种简单方法,用于指定允许特定字符或字符集自身重复出现的次数.限定符始终引用限定符前(左边)的模式,通常是单个字符,除非使用括号创建模式组. (一)非显示限定符 1. *,描述 ...

  9. 题解【洛谷P6029】[JSOI2010]旅行

    题面 简化版题意:给出 \(n\) 个点 \(m\) 条边的无向图,可以交换任意两条边的权值 \(k\) 次,求 \(1\) 结点到 \(n\) 结点的最短路. 考虑\(\text{DP}\). 把所 ...

  10. 当要打开PDB时为何会有Warning: PDB altered with errors.

    对PDB执行 alter pluggable database pdbprod2 open; 操作后提示:Warning: PDB altered with errors. 来自AskScuti博客园 ...