bzoj1013球形空间产生器sphere 高斯消元(有系统差的写法
Description
有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。
Input
第一行是一个整数,n。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点后6位,且其绝对值都不超过20000。
Output
有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。
Sample Input
0.0 0.0
-1.0 1.0
1.0 0.0
Sample Output
HINT
数据规模:
对于40%的数据,1<=n<=3
对于100%的数据,1<=n<=10
提示:给出两个定义:
1、 球心:到球面上任意一点距离都相等的点。
2、 距离:设两个n为空间上的点A, B的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 + … + (an-bn)^2 )
这个题的思路就是可以吧第一行抽出来和其他n行联立进行高斯消元,注意系统差,下标从0还是从1开始
#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
const double EPS=1E-8;
int n;
double A[20][20],a[20][20],x[20];
int Gauss(){
for(int i=1;i<=n;++i){
int pivot=i,col=i-1;
for(int j=i+1;j<=n;++j) if(abs(a[j][col])>abs(a[pivot][col])) pivot=j;
if(pivot!=i) for(int k=0;k<=n;++k) swap(a[i][k],a[pivot][k]);
if(abs(a[i][col])<EPS) return 0;
for(int j=col+1;j<=n;++j) a[i][j]/=a[i][col];
for(int j=i+1;j<=n;++j)
if(j!=i){
if(abs(a[j][col])<EPS) continue;
for(int k=col+1;k<=n;++k) a[j][k]-=a[j][col]*a[i][k];
}
}
for(int i=0;i<n;++i) x[i]=a[i+1][n];
double ans;
for(int i=n-1;i>=0;--i){
ans=x[i];for(int j=i+1;j<n;++j) ans-=a[i+1][j]*x[j];
x[i]=ans;
}
return 1;
}
int main(){
while(~scanf("%d",&n)){
for(int i=0;i<=n;++i){
for(int j=0;j<n;++j){
scanf("%lf",&A[i][j]);
}
}
//n变量
//讲第0行抽出来
memset(a,0,sizeof(a));
for(int i=1;i<=n;++i){
for(int j=0;j<n;++j){
a[i][j]=2*(A[0][j]-A[i][j]);
}
for(int j=0;j<n;++j){
a[i][n]+=(A[0][j]*A[0][j]-A[i][j]*A[i][j]);
}
}
if(!Gauss()) printf("err\n");
for(int i=0;i<n-1;++i){
printf("%.3f ",x[i]);
}
printf("%.3f\n",x[n-1]);
}
return 0;
}
bzoj1013球形空间产生器sphere 高斯消元(有系统差的写法的更多相关文章
- BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...
- BZOJ1013球形空间产生器sphere 高斯消元
@[高斯消元] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球 ...
- [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...
- BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元
1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...
- lydsy1013: [JSOI2008]球形空间产生器sphere 高斯消元
题链:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 1013: [JSOI2008]球形空间产生器sphere 时间限制: 1 Sec 内 ...
- BZOJ 1013 球形空间产生器sphere 高斯消元
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1013 题目大意: 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困 ...
- 【BZOJ 1013】【JSOI2008】球形空间产生器sphere 高斯消元基础题
最基础的高斯消元了,然而我把j打成i连WA连跪,考场上再犯这种错误就真的得滚粗了. #include<cmath> #include<cstdio> #include<c ...
- 【BZOJ1013】球形空间产生器(高斯消元)
[BZOJ1013]球形空间产生器(高斯消元) 题面 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标, ...
- 【BZOJ1013】[JSOI2008] 球形空间产生器(高斯消元)
点此看题面 大致题意: 给定一个\(n\)维球体上的\(n+1\)个点,请你求出这个球体的圆心的位置. 列出方程 这一看就是一道解方程题. 我们可以设这个球体的圆心的位置为\((x_1,x_2,..x ...
随机推荐
- 性能测试工具locust简单应用
简介 Locust是一种易于使用的分布式用户负载测试工具.可用于对网站(或系统)负载测试,并依据响应数据计算出系统支持的并发用户数. 安装及调试(以下操作在windows环境下进行) Locust基于 ...
- 如何将1rpx转为1rem
最近我在开发的过程中,出现了一个需求,我需要把开发好的小程序倒模成H5页面,这里就涉及一个布局单位问题,我们小程序用的单位都rpx,是按照750rpx铺满整个页面来算的,可H5又不支持rpx单位,这里 ...
- 转 2 jmeter常用功能介绍-测试计划、线程组
2 jmeter常用功能介绍-测试计划.线程组 1.测试计划测试用来描述一个性能测试,所有内容都是基于这个测试计划的. (1)User Defined Variables:设置用户全局变量.一般添 ...
- Win2008 server R2重置登录密码Administrator
1.PE方式修改密码 背景:https://www.cnblogs.com/Crazy-Liu/p/11245730.html 上述连接中的有AD域的机器系统使用哑巴式老毛桃等启动PE出现以下: 原因 ...
- AES加密模式
https://baike.baidu.com/item/高级加密标准/468774 AES加密模式 对称/分组密码一般分为流加密(如OFB.CFB等)和块加密(如ECB.CBC等).对于流加密,需要 ...
- 阿里云服务器centos7,docker部署mysql+Redis+vue+springboot+Nginx+fastdfs,亲测可用
一.购买云服务器 我是今年双十一期间在阿里云购买的服务器, 简单配置2核_4G_40G_3M,三年用了不到800块,不过当时我记得腾讯云更便宜,个人感觉,阿里的云服务器更加的稳定, 毕竟身经百战, 经 ...
- bzoj 2038(莫队算法)
2038: [2009国家集训队]小Z的袜子(hose) 时间限制: 20 Sec 内存限制: 259 MB 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来 ...
- qbxt 学习笔记 10.2 晚
目录 整除性 素数 组合数 Lucas 定理: 整除性 直接搬 ppt 特殊的整除性质 素数 素数定理: 线性筛: 原理:一个合数只由其最大素因子筛去. 代码: 组合数 Lucas 定理: \[\bi ...
- FFmpeg libswscale源码分析1-API介绍
本文为作者原创,转载请注明出处:https://www.cnblogs.com/leisure_chn/p/14349382.html libswscale 是 FFmpeg 中完成图像尺寸缩放和像素 ...
- 重绘和回流(Repaint & Reflow)总结,以及如何进行优化
1. 浏览器渲染机制 浏览器采用流式布局模型(Flow Based Layout) 浏览器会把HTML解析成DOM,把CSS解析成CSSOM,DOM和CSSOM合并就产生了渲染树(Render Tre ...