Description

有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

Input

第一行是一个整数,n。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点后6位,且其绝对值都不超过20000。

Output

有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

Sample Input

2
0.0 0.0
-1.0 1.0
1.0 0.0

Sample Output

0.500 1.500

HINT

数据规模:

对于40%的数据,1<=n<=3

对于100%的数据,1<=n<=10

提示:给出两个定义:

1、 球心:到球面上任意一点距离都相等的点。

2、 距离:设两个n为空间上的点A, B的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 + … + (an-bn)^2 )

这个题的思路就是可以吧第一行抽出来和其他n行联立进行高斯消元,注意系统差,下标从0还是从1开始

#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
const double EPS=1E-8;
int n;
double A[20][20],a[20][20],x[20];
int Gauss(){
for(int i=1;i<=n;++i){
int pivot=i,col=i-1;
for(int j=i+1;j<=n;++j) if(abs(a[j][col])>abs(a[pivot][col])) pivot=j;
if(pivot!=i) for(int k=0;k<=n;++k) swap(a[i][k],a[pivot][k]);
if(abs(a[i][col])<EPS) return 0;
for(int j=col+1;j<=n;++j) a[i][j]/=a[i][col];
for(int j=i+1;j<=n;++j)
if(j!=i){
if(abs(a[j][col])<EPS) continue;
for(int k=col+1;k<=n;++k) a[j][k]-=a[j][col]*a[i][k];
}
}
for(int i=0;i<n;++i) x[i]=a[i+1][n];
double ans;
for(int i=n-1;i>=0;--i){
ans=x[i];for(int j=i+1;j<n;++j) ans-=a[i+1][j]*x[j];
x[i]=ans;
}
return 1;
}
int main(){
while(~scanf("%d",&n)){
for(int i=0;i<=n;++i){
for(int j=0;j<n;++j){
scanf("%lf",&A[i][j]);
}
}
//n变量
//讲第0行抽出来
memset(a,0,sizeof(a));
for(int i=1;i<=n;++i){
for(int j=0;j<n;++j){
a[i][j]=2*(A[0][j]-A[i][j]);
}
for(int j=0;j<n;++j){
a[i][n]+=(A[0][j]*A[0][j]-A[i][j]*A[i][j]);
}
}
if(!Gauss()) printf("err\n");
for(int i=0;i<n-1;++i){
printf("%.3f ",x[i]);
}
printf("%.3f\n",x[n-1]);
}
return 0;
}

bzoj1013球形空间产生器sphere 高斯消元(有系统差的写法的更多相关文章

  1. BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...

  2. BZOJ1013球形空间产生器sphere 高斯消元

    @[高斯消元] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球 ...

  3. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  4. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  5. lydsy1013: [JSOI2008]球形空间产生器sphere 高斯消元

    题链:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 1013: [JSOI2008]球形空间产生器sphere 时间限制: 1 Sec  内 ...

  6. BZOJ 1013 球形空间产生器sphere 高斯消元

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1013 题目大意: 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困 ...

  7. 【BZOJ 1013】【JSOI2008】球形空间产生器sphere 高斯消元基础题

    最基础的高斯消元了,然而我把j打成i连WA连跪,考场上再犯这种错误就真的得滚粗了. #include<cmath> #include<cstdio> #include<c ...

  8. 【BZOJ1013】球形空间产生器(高斯消元)

    [BZOJ1013]球形空间产生器(高斯消元) 题面 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标, ...

  9. 【BZOJ1013】[JSOI2008] 球形空间产生器(高斯消元)

    点此看题面 大致题意: 给定一个\(n\)维球体上的\(n+1\)个点,请你求出这个球体的圆心的位置. 列出方程 这一看就是一道解方程题. 我们可以设这个球体的圆心的位置为\((x_1,x_2,..x ...

随机推荐

  1. Typora+PicGo+Gitee打造图床

    前言 ​ 自己一直使用的是Typora来写博客,但比较麻烦的是图片粘贴上去后都是存储到了本地,写好了之后放到博客园等地,图片不能直接访问,但如今Typora已经支持图片上传,所以搞了一波图片上传到Gi ...

  2. # Functions are First-Class Citizens in Python 一等公民

    # Functions are First-Class Citizens in Python 一等公民https://cn.bing.com/search?form=MOZSBR&pc=MOZ ...

  3. Git:.gitignore和.gitkeep文件的使用 让空文件夹被跟踪

    Git:.gitignore和.gitkeep文件的使用 Git:.gitignore和.gitkeep文件的使用 https://majing.io/posts/10000001781172 .gi ...

  4. ByteDance 2019 春招题目

    牛客网字节跳动笔试真题:https://www.nowcoder.com/test/16516564/summary 分了 2 次做,磕磕碰碰才写完,弱鸡悲鸣. 1. 聪明的编辑 题目:Link . ...

  5. Hadoop优势,组成的相关架构,大数据生态体系下的模式

    Hadoop优势,组成的相关架构,大数据生态体系下的模式 一.Hadoop的优势 二.Hadoop的组成 2.1 HDFS架构 2.2 Yarn架构 2.3 MapReduce架构 三.大数据生态体系 ...

  6. Cisco的互联网络操作系统IOS和安全设备管理器SDM__散知识点1

    1.启动路由器:当你初次启动一台Cisco路由器时,它将运行开机自检(POST)过程.如果通过了,它将从闪存中查找Cisco IOS,如果有IOS文件存在,则执行装载操作(闪存是一个可电子擦写.可编程 ...

  7. 武装你的WEBAPI-OData常见问题

    本文属于OData系列 目录 武装你的WEBAPI-OData入门 武装你的WEBAPI-OData便捷查询 武装你的WEBAPI-OData分页查询 武装你的WEBAPI-OData资源更新Delt ...

  8. 开发环境管理利器Vagrant

    引言 不知道你是否经历过,开发环境与生产环境不一致.Windows开发和Linux上的包效果不一样.在我这运行时好的啊 等等等问题,那有没有解决方法呢? 答案就是Vagrant.Docker 1.简介 ...

  9. Linux 配置永久辅助IP

    1.什么是辅助IP 辅助IP来源于Linux之中,Linux的系统网卡可以支持多IP的绑定,而辅助IP多用于解耦解决服务之间的兼容性问题,常见的应用场景有: 虚拟IP,高可用飘逸: 永久临时IP解耦使 ...

  10. UI的管理

    游戏的UI系统往往会比较复杂,工作量比较庞大,需要多人协作完成,为了开发和维护方便,有必要对UI系统进行管理. 一.制作预制件 将UI的各个不同的功能面板制作为预制件,放入Resources目录下,方 ...