bzoj1013球形空间产生器sphere 高斯消元(有系统差的写法
Description
有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。
Input
第一行是一个整数,n。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点后6位,且其绝对值都不超过20000。
Output
有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。
Sample Input
0.0 0.0
-1.0 1.0
1.0 0.0
Sample Output
HINT
数据规模:
对于40%的数据,1<=n<=3
对于100%的数据,1<=n<=10
提示:给出两个定义:
1、 球心:到球面上任意一点距离都相等的点。
2、 距离:设两个n为空间上的点A, B的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 + … + (an-bn)^2 )
这个题的思路就是可以吧第一行抽出来和其他n行联立进行高斯消元,注意系统差,下标从0还是从1开始
#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
const double EPS=1E-8;
int n;
double A[20][20],a[20][20],x[20];
int Gauss(){
for(int i=1;i<=n;++i){
int pivot=i,col=i-1;
for(int j=i+1;j<=n;++j) if(abs(a[j][col])>abs(a[pivot][col])) pivot=j;
if(pivot!=i) for(int k=0;k<=n;++k) swap(a[i][k],a[pivot][k]);
if(abs(a[i][col])<EPS) return 0;
for(int j=col+1;j<=n;++j) a[i][j]/=a[i][col];
for(int j=i+1;j<=n;++j)
if(j!=i){
if(abs(a[j][col])<EPS) continue;
for(int k=col+1;k<=n;++k) a[j][k]-=a[j][col]*a[i][k];
}
}
for(int i=0;i<n;++i) x[i]=a[i+1][n];
double ans;
for(int i=n-1;i>=0;--i){
ans=x[i];for(int j=i+1;j<n;++j) ans-=a[i+1][j]*x[j];
x[i]=ans;
}
return 1;
}
int main(){
while(~scanf("%d",&n)){
for(int i=0;i<=n;++i){
for(int j=0;j<n;++j){
scanf("%lf",&A[i][j]);
}
}
//n变量
//讲第0行抽出来
memset(a,0,sizeof(a));
for(int i=1;i<=n;++i){
for(int j=0;j<n;++j){
a[i][j]=2*(A[0][j]-A[i][j]);
}
for(int j=0;j<n;++j){
a[i][n]+=(A[0][j]*A[0][j]-A[i][j]*A[i][j]);
}
}
if(!Gauss()) printf("err\n");
for(int i=0;i<n-1;++i){
printf("%.3f ",x[i]);
}
printf("%.3f\n",x[n-1]);
}
return 0;
}
bzoj1013球形空间产生器sphere 高斯消元(有系统差的写法的更多相关文章
- BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...
- BZOJ1013球形空间产生器sphere 高斯消元
@[高斯消元] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球 ...
- [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...
- BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元
1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...
- lydsy1013: [JSOI2008]球形空间产生器sphere 高斯消元
题链:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 1013: [JSOI2008]球形空间产生器sphere 时间限制: 1 Sec 内 ...
- BZOJ 1013 球形空间产生器sphere 高斯消元
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1013 题目大意: 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困 ...
- 【BZOJ 1013】【JSOI2008】球形空间产生器sphere 高斯消元基础题
最基础的高斯消元了,然而我把j打成i连WA连跪,考场上再犯这种错误就真的得滚粗了. #include<cmath> #include<cstdio> #include<c ...
- 【BZOJ1013】球形空间产生器(高斯消元)
[BZOJ1013]球形空间产生器(高斯消元) 题面 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标, ...
- 【BZOJ1013】[JSOI2008] 球形空间产生器(高斯消元)
点此看题面 大致题意: 给定一个\(n\)维球体上的\(n+1\)个点,请你求出这个球体的圆心的位置. 列出方程 这一看就是一道解方程题. 我们可以设这个球体的圆心的位置为\((x_1,x_2,..x ...
随机推荐
- 5V充12.6V三节锂电池,5V升压12.6V的电路图
三串锂电池的充电电压是三串锂电池的最高电压值,就是12.6V了.5V充12.6V是5V给三串锂电池充电.如笔记本的USB口5V给三串锂电池充电,如5V的适配器或者手机充电器插上数据线给三串锂电池充电电 ...
- 前端面试之HTTP状态码!
前端面试之HTTP协议的东西! 一次HTTP请求的流程! HTTP 状态码 成功响应(200–299) 状态码 含义 200 请求成功 201 该请求已成功,并因此创建了一个新的资源.这通常是在POS ...
- 解决PHP无法监听9000端口问题/502错误解决办法
问题背景 配置nginx+php服务的时候,发现网站能打开html,打开php文件就显示502,一般这个是php没启动啊啥的导致不能正常解析php文件. 原因分析 因为nginx解析php文件是交给f ...
- Java并发组件一之CountDownLatch
使用场景: 一个或N个线程,等待其它线程完成某项操作之后才能继续往下执行.CountDownLatch描述的是,一个或N个线程等待其他线程的关系. 使用方法: 设CountDownLatch个数:Co ...
- Linux进程内存用量分析之堆内存篇
https://mp.weixin.qq.com/s/a6mLMDinYQGUSaOsGYCEaA 独家|Linux进程内存用量分析之堆内存篇 姬晨烜 58技术 2019-12-06 导语 本文将介绍 ...
- SpringMVC听课笔记(十四:异常处理)
1. SpringMVC通过HandlerExceptionResolver处理程序的异常,包括Handler映射,数据绑定以及目标方法执行时发生的异常 2.SpringMVC提供的HandlerEx ...
- 远程url文件地址转成byte
public static byte[] urlTobyte(String url) throws MalformedURLException { URL ur = new URL(url); Buf ...
- Flink-v1.12官方网站翻译-P026-State Backends
状态后台 Flink提供了不同的状态后端,指定状态的存储方式和位置. 状态可以位于Java的堆上或离堆.根据你的状态后端,Flink还可以为应用程序管理状态,这意味着Flink处理内存管理(必要时可能 ...
- 搭建tdh平台
1.卸载tdh平台(见tdh集群卸载文件夹) 在manager节点执行chmod +x uninstall.sh (非root用户执行sudo chmod +x uninstall.sh)开始卸载TD ...
- Educational Codeforces Round 84 E. Count The Blocks
传送门: 1327- E. Count The Blocks 题意:给你一个整数n,求10^n内(每个数有前导零)长度为1到n的块分别有多少个.块的含义是连续相同数字的长度. 题解:从n=1开始枚举 ...