http://poj.org/problem?id=2954

表示我交了20+次...

为什么呢?因为多组数据我是这样判断的:da=sum{a[i].x+a[i].y},然后!da就表示没有数据了QAQ我居然查了如此久都没查出来!!!!注意负数啊负数啊啊啊啊啊啊啊

本题是pick定理:当多边形的顶点均为整数时,面积=内部整点+边上整点/2-1

然后本题要求内部整点

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } struct Point { int x, y; }a[4];
int area(Point &a, Point &b, Point &c) {
static int x1, x2, y1, y2;
x1=a.x-c.x; y1=a.y-c.y;
x2=b.x-c.x; y2=b.y-c.y;
return abs(x1*y2-x2*y1);
}
int gcd(int a, int b) { return b?gcd(b, a%b):a; }
int onLine(Point &a, Point &b) {
static int x, y;
x=abs(a.x-b.x);
y=abs(a.y-b.y);
return gcd(x, y);
}
int main() {
while(1) {
int sum=0;
rep(i, 3) read(a[i].x), read(a[i].y), sum|=a[i].x|a[i].y;
if(!sum) return 0;
int on=onLine(a[0], a[1])+onLine(a[1], a[2])+onLine(a[2], a[0]);
printf("%d\n", (area(a[0], a[1], a[2])-on)/2+1);
}
return 0;
}

  


Description

A lattice point is an ordered pair (x, y) where x and y are both integers. Given the coordinates of the vertices of a triangle (which happen to be lattice points), you are to count the number of lattice points which lie completely inside of the triangle (points on the edges or vertices of the triangle do not count).

Input

The input test file will contain multiple test cases. Each input test case consists of six integers x1, y1, x2, y2, x3, and y3, where (x1, y1), (x2, y2), and (x3, y3) are the coordinates of vertices of the triangle. All triangles in the input will be non-degenerate (will have positive area), and −15000 ≤ x1, y1, x2, y2, x3, y3 ≤ 15000. The end-of-file is marked by a test case with x1 =  y1 = x2 = y2 = x3 = y3 = 0 and should not be processed.

Output

For each input case, the program should print the number of internal lattice points on a single line.

Sample Input

0 0 1 0 0 1
0 0 5 0 0 5
0 0 0 0 0 0

Sample Output

0
6

Source

【POJ】2954 Triangle(pick定理)的更多相关文章

  1. POJ 1265 Area POJ 2954 Triangle Pick定理

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5227   Accepted: 2342 Description ...

  2. POJ 2954 Triangle (pick 定理)

    题目大意:给出三个点的坐标,问在这三个点坐标里面的整数坐标点有多少个(不包含边上的) 匹克定理:I = (A-E) / 2 + 1; A: 表示多边形面积 I : 表示多边形内部的点的个数 E: 表示 ...

  3. poj 2954 Triangle 三角形内的整点数

    poj 2954 Triangle 题意 给出一个三角形的三个点,问三角形内部有多少个整点. 解法 pick's law 一个多边形如果每个顶点都由整点构成,该多边形的面积为\(S\),该多边形边上的 ...

  4. poj 2954 Triangle(Pick定理)

    链接:http://poj.org/problem?id=2954 Triangle Time Limit: 1000MS   Memory Limit: 65536K Total Submissio ...

  5. poj 1265 Area (Pick定理+求面积)

    链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  6. POJ 1265 Area (Pick定理 & 多边形面积)

    题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...

  7. poj 1265 Area(pick定理)

    Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4373 Accepted: 1983 Description Bein ...

  8. [poj 1265]Area[Pick定理][三角剖分]

    题意: 给出机器人移动的向量, 计算包围区域的内部整点, 边上整点, 面积. 思路: 面积是用三角剖分, 边上整点与GCD有关, 内部整点套用Pick定理. S = I + E / 2 - 1 I 为 ...

  9. poj 1265 Area( pick 定理 )

    题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标   变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...

  10. Area - POJ 1265(pick定理求格点数+求多边形面积)

    题目大意:以原点为起点然后每次增加一个x,y的值,求出来最后在多边形边上的点有多少个,内部的点有多少个,多边形的面积是多少. 分析: 1.以格子点为顶点的线段,覆盖的点的个数为GCD(dx,dy),其 ...

随机推荐

  1. 面向侧面的程序设计AOP-------《三》.Net平台AOP技术概览

    本文转载自张逸:晴窗笔记 .Net平台与Java平台相比,由于它至今在服务端仍不具备与unix系统的兼容性,也不具备类似于Java平台下J2EE这样的企业级容器,使得.Net平台在大型的企业级应用上, ...

  2. Lowest Common Ancestor

    Given the root and two nodes in a Binary Tree. Find the lowest common ancestor(LCA) of the two nodes ...

  3. hdu3555

    基本的数位dp #include <cstdio> #include <cstring> using namespace std; #define D(x) x ; long ...

  4. NEFU 1146 又见A+B

    又见a+b Problem:1146 Time Limit:1000ms Memory Limit:65535K Description 给定两个非负整数A,B,求他们的和. Input 多组输入,每 ...

  5. Html标签<a>的target属性

    target属性规定了在何处打开超链接的文档. 如果在一个 <a> 标签内包含一个 target 属性,浏览器将会载入和显示用这个标签的 href 属性命名的.名称与这个目标吻合的框架或者 ...

  6. 安装qmake与环境变量解析

    转自:http://www.kuqin.com/qtdocument/qmake-manual-2.html 安装qmake 当Qt被连编的时候,默认情况下qmake也会被连编. 这一部分解释如何手工 ...

  7. Maven使用笔记(七)Maven使用问题记录

    1.Java-maven异常-cannot be cast to javax.servlet.Filter 报错 tomcat 启动后先将tomcat/lib目录下的jar包全部读入内存,如果weba ...

  8. C#开发微信公众平台-就这么简单(附Demo)(转载)

    转载地址:http://www.cnblogs.com/xishuai/p/3625859.html 写在前面 服务号和订阅号 URL配置 创建菜单 查询.删除菜单 接受消息 发送消息(图文.菜单事件 ...

  9. 在MVC3或asp.net中修改KindEditor实现上传图片时添加水印

    主要修改两个文件:image.js和upload_json.ashx文件. 一.修改image.js文件 打开kindeditor/plugins/image目录下的image.js文件,找到 '&l ...

  10. 解决Windows和Ubuntu时间不一致的问题

    问题原因是使用的时间不一致导致的.win10直接从bios读出来的时间认为就是实际时间,ubuntu认为加上8个小时 后的才是.win10用的rtc ,ubuntu用的utc 在ubuntu16.04 ...