吴裕雄 python 神经网络——TensorFlow 实现LeNet-5模型处理MNIST手写数据集
import os
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data tf.reset_default_graph() INPUT_NODE = 784
OUTPUT_NODE = 10 IMAGE_SIZE = 28
NUM_CHANNELS = 1
NUM_LABELS = 10 CONV1_DEEP = 32
CONV1_SIZE = 5 CONV2_DEEP = 64
CONV2_SIZE = 5 FC_SIZE = 512 def inference(input_tensor, train, regularizer):
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.get_variable("weight", [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEEP],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv1_biases = tf.get_variable("bias", [CONV1_DEEP], initializer=tf.constant_initializer(0.0))
conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases)) with tf.name_scope("layer2-pool1"):
pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="SAME") with tf.variable_scope("layer3-conv2"):
conv2_weights = tf.get_variable("weight", [CONV2_SIZE, CONV2_SIZE, CONV1_DEEP, CONV2_DEEP],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv2_biases = tf.get_variable("bias", [CONV2_DEEP], initializer=tf.constant_initializer(0.0))
conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases)) with tf.name_scope("layer4-pool2"):
pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
pool_shape = pool2.get_shape().as_list()
nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
reshaped = tf.reshape(pool2, [pool_shape[0], nodes]) with tf.variable_scope('layer5-fc1'):
fc1_weights = tf.get_variable("weight", [nodes, FC_SIZE],initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses', regularizer(fc1_weights))
fc1_biases = tf.get_variable("bias", [FC_SIZE], initializer=tf.constant_initializer(0.1))
fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
if train: fc1 = tf.nn.dropout(fc1, 0.5) with tf.variable_scope('layer6-fc2'):
fc2_weights = tf.get_variable("weight", [FC_SIZE, NUM_LABELS],initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))
fc2_biases = tf.get_variable("bias", [NUM_LABELS], initializer=tf.constant_initializer(0.1))
logit = tf.matmul(fc1, fc2_weights) + fc2_biases
return logit BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.01
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 6000
MOVING_AVERAGE_DECAY = 0.99 def train(mnist):
# 定义输出为4维矩阵的placeholder
x = tf.placeholder(tf.float32, [BATCH_SIZE,IMAGE_SIZE,IMAGE_SIZE,NUM_CHANNELS],name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = inference(x,False,regularizer)
global_step = tf.Variable(0, trainable=False) # 定义损失函数、学习率、滑动平均操作以及训练过程。
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,staircase=True) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train')
# 初始化TensorFlow持久化类。
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
reshaped_xs = np.reshape(xs, (BATCH_SIZE,IMAGE_SIZE,IMAGE_SIZE,NUM_CHANNELS))
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys})
if i % 1000 == 0:
print("After %d training step(s), loss on training batch is %g." % (step, loss_value)) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
train(mnist) if __name__ == '__main__':
main()

吴裕雄 python 神经网络——TensorFlow 实现LeNet-5模型处理MNIST手写数据集的更多相关文章
- 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...
- TensorFlow实战第五课(MNIST手写数据集识别)
Tensorflow实现softmax regression识别手写数字 MNIST手写数字识别可以形象的描述为机器学习领域中的hello world. MNIST是一个非常简单的机器视觉数据集.它由 ...
- 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集
#加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...
- 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...
- 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用
#训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...
- 吴裕雄 python 神经网络——TensorFlow实现搭建基础神经网络
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def add_layer(inputs, in_ ...
- 吴裕雄 python 神经网络——TensorFlow图片预处理调整图片
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, ...
- 吴裕雄 python 神经网络——TensorFlow pb文件保存方法
import tensorflow as tf from tensorflow.python.framework import graph_util v1 = tf.Variable(tf.const ...
- 吴裕雄 python 神经网络——TensorFlow 数据集高层操作
import tempfile import tensorflow as tf train_files = tf.train.match_filenames_once("E:\\output ...
- 吴裕雄 python 神经网络——TensorFlow 输入数据处理框架
import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords ...
随机推荐
- Sliding Window POJ - 2823 单调队列模板题
Sliding Window POJ - 2823 单调队列模板题 题意 给出一个数列 并且给出一个数m 问每个连续的m中的最小\最大值是多少,并输出 思路 使用单调队列来写,拿最小值来举例 要求区间 ...
- Java 读取网络资源文件 获取文件大小 MD5校验值
Java 读取网络资源文件 获取文件大小 MD5校验值 封装一个文件操作工具类: package c; import java.io.*; import java.net.HttpURLConnect ...
- python夜记
关于多行字符串(multi-line strings)的表现: Python列表是基于0索引的.(zero-indexed). 晌午起床来嘞,再来些笔记: Treasures 1: 列表方法rever ...
- 【游记】CSP-J2019谔谔记
结果果然不能把希望寄托在渺茫的玄学上,实力不够还是不要渴求什么奇迹了. ----2020.2.21记 Day -6 考场就在我市,所以东道主应该运气会好一点吧. Day -1 听说本来准备上的中学准备 ...
- Codeforces A. Serval and Bus
inputstandard inputoutputstandard outputIt is raining heavily. But this is the first day for Serval, ...
- C语言数据结构——第一章 数据结构的概念
一.数据结构的基本概念 1.1-数据结构是什么? 数据结构是计算机存储和组织数据的方式.数据结构是指相互之间存在一种或多种特定关系的数据元素的集合.一般情况下,精心选择的数据结构可以带来更高的运行或者 ...
- 密码学笔记——playfair密码
Playfair密码(Playfair cipher 或 Playfair square)一种替换密码,1854年由查尔斯·惠斯通(Charles Wheatstone)的英国人发明. 例题: 某种 ...
- AcWing 867. 分解质因数
#include <iostream> #include <algorithm> using namespace std; void divide(int x) { ; i & ...
- drf-jwt手动签发与校验,drf小组件:过滤、筛选、排序、分页
复习 """ 频率组件:限制接口的访问频率 源码分析:初始化方法.判断是否有权限方法.计数等待时间方法 自定义频率组件: class MyThrottle(SimpleR ...
- Nuxt 常用的配置项
1:在开发项目时 我们可能会遇到端口被占用或者指定IP的情况, 在Nuxt中 我们可以在page.json 文件中进行配置,例如希望IP配置成125.0.0.1,端口设置1616 "conf ...