import os
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data tf.reset_default_graph() INPUT_NODE = 784
OUTPUT_NODE = 10 IMAGE_SIZE = 28
NUM_CHANNELS = 1
NUM_LABELS = 10 CONV1_DEEP = 32
CONV1_SIZE = 5 CONV2_DEEP = 64
CONV2_SIZE = 5 FC_SIZE = 512 def inference(input_tensor, train, regularizer):
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.get_variable("weight", [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEEP],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv1_biases = tf.get_variable("bias", [CONV1_DEEP], initializer=tf.constant_initializer(0.0))
conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases)) with tf.name_scope("layer2-pool1"):
pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="SAME") with tf.variable_scope("layer3-conv2"):
conv2_weights = tf.get_variable("weight", [CONV2_SIZE, CONV2_SIZE, CONV1_DEEP, CONV2_DEEP],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv2_biases = tf.get_variable("bias", [CONV2_DEEP], initializer=tf.constant_initializer(0.0))
conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases)) with tf.name_scope("layer4-pool2"):
pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
pool_shape = pool2.get_shape().as_list()
nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
reshaped = tf.reshape(pool2, [pool_shape[0], nodes]) with tf.variable_scope('layer5-fc1'):
fc1_weights = tf.get_variable("weight", [nodes, FC_SIZE],initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses', regularizer(fc1_weights))
fc1_biases = tf.get_variable("bias", [FC_SIZE], initializer=tf.constant_initializer(0.1))
fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
if train: fc1 = tf.nn.dropout(fc1, 0.5) with tf.variable_scope('layer6-fc2'):
fc2_weights = tf.get_variable("weight", [FC_SIZE, NUM_LABELS],initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))
fc2_biases = tf.get_variable("bias", [NUM_LABELS], initializer=tf.constant_initializer(0.1))
logit = tf.matmul(fc1, fc2_weights) + fc2_biases
return logit BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.01
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 6000
MOVING_AVERAGE_DECAY = 0.99 def train(mnist):
# 定义输出为4维矩阵的placeholder
x = tf.placeholder(tf.float32, [BATCH_SIZE,IMAGE_SIZE,IMAGE_SIZE,NUM_CHANNELS],name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = inference(x,False,regularizer)
global_step = tf.Variable(0, trainable=False) # 定义损失函数、学习率、滑动平均操作以及训练过程。
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,staircase=True) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train')
# 初始化TensorFlow持久化类。
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
reshaped_xs = np.reshape(xs, (BATCH_SIZE,IMAGE_SIZE,IMAGE_SIZE,NUM_CHANNELS))
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys})
if i % 1000 == 0:
print("After %d training step(s), loss on training batch is %g." % (step, loss_value)) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
train(mnist) if __name__ == '__main__':
main()

吴裕雄 python 神经网络——TensorFlow 实现LeNet-5模型处理MNIST手写数据集的更多相关文章

  1. 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集

    import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...

  2. TensorFlow实战第五课(MNIST手写数据集识别)

    Tensorflow实现softmax regression识别手写数字 MNIST手写数字识别可以形象的描述为机器学习领域中的hello world. MNIST是一个非常简单的机器视觉数据集.它由 ...

  3. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

  4. 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集

    import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...

  5. 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用

    #训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...

  6. 吴裕雄 python 神经网络——TensorFlow实现搭建基础神经网络

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def add_layer(inputs, in_ ...

  7. 吴裕雄 python 神经网络——TensorFlow图片预处理调整图片

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, ...

  8. 吴裕雄 python 神经网络——TensorFlow pb文件保存方法

    import tensorflow as tf from tensorflow.python.framework import graph_util v1 = tf.Variable(tf.const ...

  9. 吴裕雄 python 神经网络——TensorFlow 数据集高层操作

    import tempfile import tensorflow as tf train_files = tf.train.match_filenames_once("E:\\output ...

  10. 吴裕雄 python 神经网络——TensorFlow 输入数据处理框架

    import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords ...

随机推荐

  1. 线程池(ExecutorService)初体验

    背景:查询月统计数据,因为查询日统计数据功能已经实现.月统计数据,只是参一个List(date) 参数,for循环调用日统计,然后把结果整合就OK. 问题:单线程跑  太耗时间 解决方案:使用多线程, ...

  2. ubuntu 终端快捷方式汇总

    terminal 是一个命令行终端,将启动系统默认的shell,shell是一个解释并执行在命令行提示符输入的命令的程序. 启动 terminal1 在 “面板主页” 的应用程序搜索栏中,输入命令gn ...

  3. win10 解决.net framework 3.5 安装报错 0x80240438

    打开注册表:cmd+r 输入regedit,确定:找到路径HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate\AU ...

  4. docker 环境部署

    docker 查看所有容器 docker ps  -a docker 查看所有running 容器: docker ps docker 停止全部容器: docker stop $(docker ps  ...

  5. codeforces 1198B - Welfare State

    题目链接:http://codeforces.com/problemset/status 题目大意为有n个市民,每个市民有ai点数财富,以下有q次操作,操作类型为两类,1类:把第p个市民的财富改为x, ...

  6. python入门(十九讲):多进程

    1.进程概念 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动.是系统进行资源分配和调度的基本单位,是操作系统结构的基础. 狭义定义:进程是正在运行的程序的实例. 在早期面向进程设 ...

  7. ThinkPhp5 中Volist标签的用法

    Volist标签一般是和内置方法assign()搭配使用,将值从后台传到前台,是当下比较流行的一种传值方法 本文实例讲述了ThinkPHP模板循环输出Volist标签用法.分享给大家供大家参考,具体如 ...

  8. JS-对象常用方法整理

    查看对象的方法,继续控制台输出,如图: hasOwnProperty():返回一个布尔值,指示对象自身属性中是否具有指定的属性(也就是,是否有指定的键). let object1 = new Obje ...

  9. Git的基本使用 -- 历史版本、版本回退

    查看提交的日志(历史版本) git log 不能查看已删除的commit记录 git reflog 可以查看所有分支的所有操作记录,包括已删除的commit记录 版本回退 git reset --ha ...

  10. 【音乐欣赏】《Forget》 - The Tech Thieves

    曲名:Forget 作者:The Tech Thieves [00:00.000] 作曲 : Mark Emmanuel/Alia May Plesa-Topham [00:01.000] 作词 : ...