Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 3743    Accepted Submission(s): 1374

Problem Description
Consider the following exercise, found in a generic linear algebra textbook.



Let A be an n × n matrix. Prove that the following statements are equivalent:



1. A is invertible.

2. Ax = b has exactly one solution for every n × 1 matrix b.

3. Ax = b is consistent for every n × 1 matrix b.

4. Ax = 0 has only the trivial solution x = 0. 



The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the
four statements are equivalent.



Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a
lot more work than just proving four implications!



I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

 
Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:



* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.

* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
 
Output
Per testcase:



* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
 
Sample Input
2
4 0
3 2
1 2
1 3
 
Sample Output
4
2
 
Source
 
Recommend
 

题意:n个点m条边,问最少加入多少条边使得整个图联通。

思路:先Tarjan求强联通分量,缩点,再求缩点后的点的入度和出度,入读为0的点的个数为a。出度为0的点的个数为b,ans=max(a。b)

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define mod 1000000009
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v) memset ((t) , v, sizeof(t))
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define DBG pf("Hi\n")
typedef long long ll;
using namespace std; const int MAXN = 20050;//点数
const int MAXM = 500050;//边数 struct Edge
{
int to,next;
}edge[MAXM]; int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~scc
int Index,top;
int scc;//强联通分量的个数
bool Instack[MAXN];
int num[MAXN];//各个强联通分量包括的点的个数。数组编号为1~scc
//num数组不一定须要,结合实际情况 void addedge(int u,int v)
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
} void Tarjan(int u)
{
int v;
Low[u]=DFN[u]=++Index;
Stack[top++]=u;
Instack[u]=true;
for (int i=head[u];i+1;i=edge[i].next)
{
v=edge[i].to;
if (!DFN[v])
{
Tarjan(v);
if (Low[u]>Low[v]) Low[u]=Low[v];
}
else if (Instack[v]&&Low[u]>DFN[v])
Low[u]=DFN[v];
}
if (Low[u]==DFN[u])
{
scc++;
do{
v=Stack[--top];
Instack[v]=false;
Belong[v]=scc;
num[scc]++;
}while (v!=u);
}
} void solve(int N)
{
memset(DFN,0,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
memset(num,0,sizeof(num));
Index=scc=top=0;
for (int i=1;i<=N;i++) //点的编号从1開始
if (!DFN[i])
Tarjan(i);
} void init()
{
tot=0;
memset(head,-1,sizeof(head));
} int n,m;
int in[MAXN],out[MAXN]; int main()
{
#ifndef ONLINE_JUDGE
freopen("C:/Users/asus1/Desktop/IN.txt","r",stdin);
#endif
int i,j,u,v,t;
sf(t);
while (t--)
{
sff(n,m);
if(n==1){ //特判1(n==1,m==0)
printf("0\n");
continue;
}
if(m==0){ //特判2( n==? ,m==0)
printf("%d\n",n);
continue;
}
init();
for (i=0;i<m;i++)
{
sff(u,v);
addedge(u,v);
}
solve(n);
if(scc==1){ //假设强连通个数为1
printf("0\n");
continue;
}
mem(in,0);
mem(out,0);
for (int u=1;u<=n;u++)
{
for (i=head[u];i+1;i=edge[i].next)
{
int v=edge[i].to;
if (Belong[u]!=Belong[v])
{
out[Belong[u]]++;
in[Belong[v]]++;
}
}
}
int ans,a=0,b=0;
for (i=1;i<=scc;i++)
{
if (out[i]==0)
a++;
if (in[i]==0)
b++;
}
ans=max(a,b);
pf("%d\n",ans);
}
return 0;
}

Proving Equivalences (hdu 2767 强联通缩点)的更多相关文章

  1. Intelligence System (hdu 3072 强联通缩点+贪心)

    Intelligence System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  2. hdu2767 Proving Equivalences,有向图强联通,Kosaraju算法

    点击打开链接 有向图强联通,Kosaraju算法 缩点后分别入度和出度为0的点的个数 answer = max(a, b); scc_cnt = 1; answer = 0 #include<c ...

  3. HDU 2767-Proving Equivalences(强联通+缩点)

    题目地址:pid=2767">HDU 2767 题意:给一张有向图.求最少加几条边使这个图强连通. 思路:先求这张图的强连通分量.假设为1.则输出0(证明该图不须要加边已经是强连通的了 ...

  4. HDU 6170 FFF at Valentine(强联通缩点+拓扑排序)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6165 题意:给你一个无环,无重边的有向图,问你任意两点,是否存在路径使得其中一点能到达另一点 解析:强 ...

  5. POJ 2186 Popular Cows(强联通+缩点)

    Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= ...

  6. [bzoj 1093][ZJOI2007]最大半联通子图(强联通缩点+DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1093 分析: 首先肯定是先把强联通全部缩成一个点,然后成了一个DAG 下面要知道一点: ...

  7. POJ 2762Going from u to v or from v to u?(强联通 + 缩点 + 拓扑排序)

    [题意]: 有N个房间,M条有向边,问能否毫无顾虑的随机选两个点x, y,使从①x到达y,或者,②从y到达x,一定至少有一条成立.注意是或者,不是且. [思路]: 先考虑,x->y或者y-> ...

  8. HDU 5934 强联通分量

    Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  9. hdu 4612 双联通缩点+树形dp

    #pragma comment(linker,"/STACK:102400000,102400000")//总是爆栈加上这个就么么哒了 #include<stdio.h> ...

随机推荐

  1. android的布局-----TableLayout(表格布局)

    学习导图 (1)TableLayout的相关简介 java的swing编程和html中经常会使用到表格,可见表格的应用开发中使用还是比较多的,同样android也为我们提供这样的布局方式. (2)如何 ...

  2. c# automapper 使用

    一.最简单的用法 有两个类User和UserDto 1 public class User 2 { 3 public int Id { get; set; } 4 public string Name ...

  3. nodejs递归创建目录

    var fs = require("fs"); var path = require("path"); // 递归创建目录 异步方法 function mkdi ...

  4. With语句在数据统计应用

    WITH TMP_EXECUTOR(EXECUTOR,EXECUTORNAME) AS ( SELECT DISTINCT T.EXECUTOR ,T1.FULLNAME AS EXECUTORNAM ...

  5. (18) python 爬虫实战

    一切从最简单开始 峰绘网 :http://www.ifenghui.com/ 一个比较好爬的漫画网,之所以选择这个网站,因为查看源代码能直接获得漫画的jpg连接,而且每一话所有的jpg一次性的都展示出 ...

  6. Linux系统日常运维-修改IP地址

    分享下高手写的很好的文章 IP地址.子网掩码.网络号.主机号.网络地址.主机地址 step 0: check the iptables.selinux service iptables iptable ...

  7. fs寄存器相关,PEB,TEB

    ---恢复内容开始--- FS寄存器指向:偏移 说明000 指向SEH链指针004 线程堆栈顶部008 线程堆栈底部00C SubSystemTib010 FiberData014 Arbitrary ...

  8. unsupported Scan, storing driver.Value type []uint8 into type *time.Time 解决方案

    数据库取数据的字段为created_at,数据库中类型是TIMESTAMP,允许NULL,此时在取数据的时候就会出现这种报错. 解决方案:在数据库连接的字符串中添加:&parseTime=Tr ...

  9. sqld360

    https://mauro-pagano.com/2017/04/15/sql-monitoring-flamegraph-and-execution-plan-temperature-2-0/ ht ...

  10. .Net 多线程小结

    1.简述 一般一个程序一个进程,代码是存在进程中的,进程本身不执行代码,  执行代码的是线程. 一般一个进程里就一个线程.(一个商店就一个老板娘.) 进程就是在内存中开辟了一个空间.代码,图片..等就 ...