题意:

n个点,分成两组A,B,如果点i在A中,那么贡献值\(a_i\),反之为\(b_i\)。

现要求任意\(i \in A,j \in B\)不存在 \(x_i >= x_j\) 且 \(y_i <= y_j\),也就是说A中点不在B中点的右下方。

思路:

https://blog.nowcoder.net/n/7205418146f3446eb0b1ecec8d2ab1da

代码:

#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e5 + 5;
const int M = 50 + 5;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
const int MOD = 1000000007;
struct Node{
int x, y, a, b;
}p[maxn];
bool cmp(Node x, Node y){
if(x.x == y.x) return x.y > y.y;
return x.x < y.x;
}
vector<int> vv;
ll Max[maxn << 2], lazy[maxn << 2];
void pushup(int rt){
Max[rt] = max(Max[rt << 1], Max[rt << 1 | 1]);
}
void pushdown(int rt){
if(lazy[rt]){
lazy[rt << 1] += lazy[rt];
lazy[rt << 1 | 1] += lazy[rt];
Max[rt << 1] += lazy[rt];
Max[rt << 1 | 1] += lazy[rt];
lazy[rt] = 0;
}
}
void build(int l, int r, int rt){
Max[rt] = lazy[rt] = 0;
if(l == r) return;
int m = (l + r) >> 1;
build(l, m, rt << 1);
build(m + 1, r, rt << 1 | 1);
}
void update(int L, int R, int l, int r, int v, int rt){
if(L > R) return;
if(L <= l && R >= r){
Max[rt] += v;
lazy[rt] += v;
return;
}
pushdown(rt);
int m = (l + r) >> 1;
if(L <= m)
update(L, R, l, m, v, rt << 1);
if(R > m)
update(L, R, m + 1, r, v, rt << 1 | 1);
pushup(rt);
}
void change(int pos , int l, int r, ll v, int rt){
if(l == r){
Max[rt] = max(Max[rt], v);
return;
}
pushdown(rt);
int m = (l + r) >> 1;
if(pos <= m)
change(pos, l, m, v, rt << 1);
else
change(pos, m + 1, r, v, rt << 1 | 1);
pushup(rt);
}
ll query(int L, int R, int l, int r, int rt){
if(L <= l && R >= r){
return Max[rt];
}
pushdown(rt);
int m = (l + r) >> 1;
ll MAX = -1;
if(L <= m)
MAX = max(MAX, query(L, R, l, m, rt << 1));
if(R > m)
MAX = max(MAX, query(L, R, m + 1, r, rt << 1 | 1));
pushup(rt);
return MAX;
}
int main(){
int n;
while(~scanf("%d", &n)){
vv.clear();
for(int i = 1; i <= n; i++){
scanf("%d%d%d%d", &p[i].x, &p[i].y, &p[i].a, &p[i].b);
vv.push_back(p[i].y);
}
vv.push_back(-1);
sort(vv.begin(), vv.end());
vv.erase(unique(vv.begin(), vv.end()), vv.end());
for(int i = 1; i <= n; i++) p[i].y = lower_bound(vv.begin(), vv.end(), p[i].y) - vv.begin() + 1; sort(p + 1, p + n + 1, cmp);
build(1, vv.size(), 1);
for(int i = 1; i <= n; i++){
ll tmp = query(1, p[i].y, 1, vv.size(), 1);
update(p[i].y, vv.size(), 1, vv.size(), p[i].b, 1);
update(1, p[i].y - 1, 1, vv.size(), p[i].a, 1);
change(p[i].y, 1, vv.size(), tmp + p[i].b, 1);
}
printf("%lld\n", Max[1]);
}
return 0;
}

2019牛客多校第一场I Points Division(DP)题解的更多相关文章

  1. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

  2. 2019牛客多校第一场E ABBA(DP)题解

    链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...

  3. 2019牛客多校第一场E ABBA 贪心 + DP

    题意:问有多少个有(n + m)个A和(n + m)个B的字符串可以凑出n个AB和m个BA. 思路:首先贪心的发现,如果从前往后扫,遇到了一个A,优先把它看成AB的A,B同理.这个贪心策略用邻项交换很 ...

  4. 2019牛客多校第一场A-Equivalent Prefixes

    Equivalent Prefixes 传送门 解题思路 先用单调栈求出两个序列中每一个数左边第一个小于自己的数的下标, 存入a[], b[].然后按照1~n的顺序循环,比较 a[i]和b[i]是否相 ...

  5. 2019牛客多校第一场 A.Equivalent Prefixes

    题目描述 Two arrays u and v each with m distinct elements are called equivalent if and only if RMQ(u,l,r ...

  6. 2019 牛客多校第一场 D Parity of Tuples

    题目链接:https://ac.nowcoder.com/acm/contest/881/D 看此博客之前请先参阅吕凯飞的论文<集合幂级数的性质与应用及其快速算法>,论文中很多符号会被本文 ...

  7. 2019牛客多校第一场 E-ABBA(dp)

    ABBA 题目传送门 解题思路 用dp[i][j]来表示前i+j个字符中,有i个A和j个B的合法情况个数.我们可以让前n个A作为AB的A,因为如果我们用后面的A作为AB的A,我们一定也可以让前面的A对 ...

  8. 2019年牛客多校第一场 E题 ABBA DP

    题目链接 传送门 思路 首先我们知道\('A'\)在放了\(n\)个位置里面是没有约束的,\('B'\)在放了\(m\)个位置里面也是没有约束的,其他情况见下面情况讨论. \(dp[i][j]\)表示 ...

  9. 【2019牛客多校第一场】XOR

    题意: 给你一个集合A,里边有n个正整数,对于所有A的.满足集合内元素异或和为0的子集S,问你∑|S| n<=1e5,元素<=1e18 首先可以转化问题,不求∑|S|,而是求每个元素属于子 ...

随机推荐

  1. Spring Aop中四个重要概念,切点,切面,连接点,通知

    1. 通知: 就是我们编写的希望Aop时执行的那个方法.我们通过Aop希望我们编写的方法在目标方法执行前执行,或者执行后执行.2. 切点:切点就是我们配置的满足我们条件的目标方法.比如我们规定:名字前 ...

  2. 使用npm install安装项目依赖的时候报错

    使用npm install安装项目依赖的时候报错: npm ERR! code ELIFECYCLE npm ERR! errno 1 npm ERR! node-sass@4.14.1 postin ...

  3. JS编写的科学计算器

    最近半个月编写了一个JS+CSS+HTML的网页计算器,从最初的具有简陋界面的简单计算器改版到最终具有科学/标准计算器转换功能并且界面非常友好的计算器,收获良多!总的来说,代码简单,通俗易读,下面贴上 ...

  4. 转 5 jmeter性能测试小小的实战

    5 jmeter性能测试小小的实战   项目描述 被测网址:www.sogou.com指标:相应时间以及错误率场景:线程数 20.Ramp-Up Period(in seconds) 10.循环次数 ...

  5. Enables DNS lookups on client IP addresses 域名的分层结构

    虚拟域名访问,路由可以到达,但无输出. http://httpd.apache.org/docs/2.2/mod/core.html#hostnamelookups 移动解析 HttpDNS_域名解析 ...

  6. UserControl和CustomControl两者区别

    UserControl 将多个WPF控件(例如:TextBox,TextBlock,Button)进行组合成一个可复用的控件组: 由XAML和Code Behind代码组成: 不支持样式/模板重写: ...

  7. JDBC连接Oracle实现增、删、改操作

    jsp页面的form表单 AddMentaction实现向数据新增数据操作 DeleteMent删除操作 UpdateMent修改操作 最近在做一个练习项目"在线考试系统",在将整 ...

  8. linux反弹shell总结

    1.1发送文件(公网发内网) 文件发送端: nc -lp 6666 < 文件 文件接收端: nc 发送端ip 发送端端口 > 新文件 1.2发送文件(内网发公网)文件发送端: nc -lp ...

  9. shell(shell变量、条件表达式、流程控制)

    本章内容: 变量 运算 if语句 for语句 while语句 break.continue 实例 shell变量 1.shell变量简介 变量是任何一种编程语言都必不可少的组成部分,变量用来存放各种数 ...

  10. 在 .NET Core Logging中使用 Trace和TraceSource

    本文介绍了在.NET Core中如何在组件设计中使用Trace和TraceSource. 在以下方面会提供一些帮助: 1.你已经为.NET Framework和.NET Core / .NET Sta ...