( 转) Awesome Image Captioning
Awesome Image Captioning
2018-12-03 19:19:56
From: https://github.com/zhjohnchan/awesome-image-captioning
Papers
2010
- I2t: Image parsing to text description - Yao B Z et al, P IEEE 2011.
2011
- Im2Text: Describing Images Using 1 Million Captioned Photographs - Ordonez V et al, NIPS 2011. [project web]
2014
- Deep Captioning with Multimodal Recurrent Neural Networks - Mao J et al, arXiv preprint 2014.
2015
- Show and Tell: A Neural Image Caption Generator - Vinyals O et al, CVPR 2015. [code] [code]
- Deep Visual-Semantic Alignments for Generating Image Descriptions - Karpathy A et al, CVPR 2015. [project web] [code]
- Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation - Chen X et al, CVPR 2015.
- Long-term Recurrent Convolutional Networks for Visual Recognition and Description - Donahue J et al, CVPR 2015. [code][project web]
- Guiding the Long-Short Term Memory Model for Image Caption Generation - Jia X et al, ICCV 2015.
- Learning like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images - Mao J et al, ICCV 2015. [code]
- Expressing an Image Stream with a Sequence of Natural Sentences - Park C C et al, NIPS 2015. [code]
- Show, Attend and Tell: Neural Image Caption Generation with Visual Attention - Xu K et al, ICML 2015. [project] [code]
- Order-Embeddings of Images and Language - Vendrov I et al, arXiv preprint 2015. [code]
- Generating Images from Captions with Attention - Mansimov E et al, arXiv preprint 2015. [code]
- Learning FRAME Models Using CNN Filters for Knowledge Visualization - Lu Y, et al, arXiv preprint 2015. [code]
- Aligning where to see and what to tell: image caption with region-based attention and scene factorization - Jin J et al, arXiv preprint 2015.
2016
- Image captioning with semantic attention - You Q et al, CVPR 2016.
- DenseCap: Fully Convolutional Localization Networks for Dense Captioning - Johnson J et al, CVPR 2016. [code]
- What value do explicit high level concepts have in vision to language problems? - Wu Q et al, CVPR 2016.
- SPICE: Semantic Propositional Image Caption Evaluation - Anderson P et al, ECCV 2016. [code]
- Image Captioning with Deep Bidirectional LSTMs - Wang C et al, ACMMM 2016. [code]
- phi-LSTM: A Phrase-based Hierarchical LSTM Model for Image Captioning - Tan Y H et al, ACCV 2016.
- Multimodal Pivots for Image Caption Translation - Hitschler J et al, ACL 2016.
- Image Caption Generation with Text-Conditional Semantic Attention - Zhou L et al, arXiv preprint 2016. [code]
- DeepDiary: Automatic Caption Generation for Lifelogging Image Streams - Fan C et al, arXiv preprint 2016.
- Learning to generalize to new compositions in image understanding - Atzmon Y et al, arXiv preprint 2016.
- Generating captions without looking beyond objects - Heuer H et al, arXiv preprint 2016.
- Bootstrap, Review, Decode: Using Out-of-Domain Textual Data to Improve Image Captioning - Chen W et al, arXiv preprint 2016.
- Recurrent Image Captioner: Describing Images with Spatial-Invariant Transformation and Attention Filtering - Liu H et al, arXiv preprint 2016.
- Recurrent Highway Networks with Language CNN for Image Captioning - Gu J et al, arXiv preprint 2016.
2017
- Captioning Images with Diverse Objects - Venugopalan S et al, CVPR 2017.
- Top-down Visual Saliency Guided by Captions - Ramanishka V et al, CVPR 2017. [code]
- Self-Critical Sequence Training for Image Captioning - Steven J et al, CVPR 2017.
- Dense Captioning with Joint Inference and Visual Context - Yang L et al, CVPR 2017.
- Skeleton Key: Image Captioning by Skeleton-Attribute Decomposition - Yufei W et al, CVPR 2017.
- A Hierarchical Approach for Generating Descriptive Image Paragraphs - Krause J et al, CVPR 2017.
- Deep Reinforcement Learning-based Image Captioning with Embedding Reward - Ren Z et al, CVPR 2017.
- Incorporating Copying Mechanism in Image Captioning for Learning Novel Objects - Ting Y et al, CVPR 2017.
- Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning - Lu J et al, CVPR 2017. [code]
- Attend to You: Personalized Image Captioning with Context Sequence Memory Networks - CC Park et al, CVPR 2017. [code]
- SCA-CNN: Spatial and channel-wise attention in convolutional networks for image captioning - Chen L et al, CVPR 2017.
- Bidirectional Beam Search: Forward-Backward Inference in Neural Sequence Models for Fill-In-The-Blank Image Captioning- Qing S et al, CVPR 2017.
- Areas of Attention for Image Captioning - Pedersoli M et al, ICCV 2017.
- Boosting Image Captioning with Attributes - Yao T et al, ICCV 2017.
- An Empirical Study of Language CNN for Image Captioning - Gu J et al, ICCV 2017.
- Improved Image Captioning via Policy Gradient Optimization of SPIDEr - Liu S et al, ICCV 2017.
- Towards Diverse and Natural Image Descriptions via a Conditional GAN - Dai B et al, ICCV 2017.
- Paying Attention to Descriptions Generated by Image Captioning Models - Tavakoliy H R et al, ICCV 2017.
- Show, Adapt and Tell: Adversarial Training of Cross-domain Image Captioner - Chen T H et al, ICCV 2017.
- Image Caption with Global-Local Attention - Li L et al, AAAI 2017.
- Reference Based LSTM for Image Captioning - Chen M et al, AAAI 2017.
- Attention Correctness in Neural Image Captioning - Liu C et al, AAAI 2017.
- Text-guided Attention Model for Image Captioning - Mun J et al, AAAI 2017.
- Contrastive Learning for Image Captioning - Dai B et al, NIPS 2017.
- Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge - Vinyals O et al, TPAMI 2017. [code]
- MAT: A Multimodal Attentive Translator for Image Captioning - Liu C et al, arXiv preprint 2017.
- Punny Captions: Witty Wordplay in Image Descriptions - Chandrasekaran A et al, arXiv preprint 2017.
- Actor-Critic Sequence Training for Image Captioning - Zhang L et al, arXiv preprint 2017.
- What is the Role of Recurrent Neural Networks (RNNs) in an Image Caption Generator? - Tanti M et al, arXiv preprint 2017.
- Self-Guiding Multimodal LSTM - when we do not have a perfect training dataset for image captioning - Xian Y et al, arXiv preprint 2017.
- Phrase-based Image Captioning with Hierarchical LSTM Model - Tan Y H et al, arXiv preprint 2017.
- Show-and-Fool: Crafting Adversarial Examples for Neural Image Captioning - Chen H et al, arXiv preprint 2017.
2018
- Neural Baby Talk - Lu J et al, CVPR 2018.
- Convolutional Image Captioning - Aneja J et al, CVPR 2018.
- Learning to Evaluate Image Captioning - Cui Y et al, CVPR 2018.
- Discriminability Objective for Training Descriptive Captions - Luo R et al, CVPR 2018.
- SemStyle: Learning to Generate Stylised Image Captions using Unaligned Text - Mathews A et al, CVPR 2018.
- Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering - Anderson P et al, CVPR 2018.
- GroupCap: Group-Based Image Captioning With Structured Relevance and Diversity Constraints- Chen F et al, CVPR 2018.
- Unpaired Image Captioning by Language Pivoting - Gu J et al, ECCV 2018.
- Recurrent Fusion Network for Image Captioning - Jiang W et al, ECCV 2018.
- Rethinking the Form of Latent States in Image Captioning - Dai B et al, ECCV 2018.
- Learning to Guide Decoding for Image Captioning - Jiang W et al, AAAI 2018.
- Stack-Captioning: Coarse-to-Fine Learning for Image Captioning - Gu J et al, AAAI 2018.
- Temporal-difference Learning with Sampling Baseline for Image Captioning - Chen H et al, AAAI 2018.
- Partially-Supervised Image Captioning - Anderson P et al, NIPS 2018.
- A Neural Compositional Paradigm for Image Captioning - Dai B et al, NIPS 2018.
- Defoiling Foiled Image Captions - Wang J et al, NAACL preprint 2018.
- Object Counts! Bringing Explicit Detections Back into Image Captioning - Aneja J et al, NAACL 2018.
- Conceptual Captions: A Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning - Sharma P et al, ACL 2018. [code]
- Attacking visual language grounding with adversarial examples: A case study on neural image captioning - Chen H et al, ACL 2018.
- Improved Image Captioning with Adversarial Semantic Alignment - Melnyk I et al, arXiv preprint 2018.
- Improving Image Captioning with Conditional Generative Adversarial Nets - Chen C et al, arXiv preprint 2018.
- CNN+CNN: Convolutional Decoders for Image Captioning - Wang Q et al, arXiv preprint 2018.
- Diverse and Controllable Image Captioning with Part-of-Speech Guidance - Deshpande A et al, arXiv preprint 2018.
2019
- Meta Learning for Image Captioning - Li N et al, AAAI 2019.
- Learning Object Context for Dense Captioning - Li X et al, AAAI 2019.
- Hierarchical Attention Network for Image Captioning - Wang W et al, AAAI 2019.
- Deliberate Residual based Attention Network for Image Captioning - Gao L et al, AAAI 2019.
- Improving Image Captioning with Conditional Generative Adversarial Nets - Chen C et al, AAAI 2019.
- Connecting Language to Images: A Progressive Attention-Guided Network for Simultaneous Image Captioning and Language Grounding - Song L et al, AAAI 2019.
( 转) Awesome Image Captioning的更多相关文章
- Paper Read: Convolutional Image Captioning
		Convolutional Image Captioning 2018-11-04 20:42:07 Paper: http://openaccess.thecvf.com/content_cvpr_ ... 
- [Paper Reading] Image Captioning using Deep Neural Architectures (arXiv: 1801.05568v1)
		Main Contributions: A brief introduction about two different methods (retrieval based method and gen ... 
- 视频描述(Video Captioning)调研
		Video Analysis 相关领域介绍之Video Captioning(视频to文字描述)http://blog.csdn.net/wzmsltw/article/details/7119238 ... 
- Paper Reading - Deep Captioning with Multimodal Recurrent Neural Networks ( m-RNN ) ( ICLR 2015 )   ★
		Link of the Paper: https://arxiv.org/pdf/1412.6632.pdf Main Points: The authors propose a multimodal ... 
- [ Continuously Update ] The Paper List of Image / Video Captioning
		Papers Published in 2018 Convolutional Image Captioning - Jyoti Aneja et al., CVPR 2018 - [ Paper Re ... 
- Paper Reading - CNN+CNN: Convolutional Decoders for Image Captioning
		Link of the Paper: https://arxiv.org/abs/1805.09019 Innovations: The authors propose a CNN + CNN fra ... 
- Paper Reading - Learning to Evaluate Image Captioning ( CVPR 2018 )   ★
		Link of the Paper: https://arxiv.org/abs/1806.06422 Innovations: The authors propose a novel learnin ... 
- Paper Reading - Convolutional Image Captioning ( CVPR 2018 )
		Link of the Paper: https://arxiv.org/abs/1711.09151 Motivation: LSTM units are complex and inherentl ... 
- 第九讲_图像生成 Image Captioning
		第九讲_图像生成 Image Captioning 生成式对抗网络 Generative Adversarial network 学习数据分布:概率密度函数估计+数据样本生成 生成式模型是共生关系,判 ... 
随机推荐
- stm32f7699遇到的犯二问题
			没有看到stlink的驱动,难道板子坏了?? 结果:USB线的问题,换了一根用过的线,就行了: 
- 【Python全栈-后端开发】Django进阶1-分页
			Django[进阶篇-1 ]分页 分页 一.Django内置分页 from django.core.paginator import Paginator, EmptyPage, PageNotAnIn ... 
- JavaWeb & Tomcat
			1 JavaWeb概述 Java在服务器端的应用有Servlet,JSP和第三方框架等. Java的Web框架基本都遵循特定的路数:使用Servlet或者Filter拦截请求,使用MVC的思想设计架构 ... 
- LINUX PID 1和SYSTEMD
			LINUX PID 1和SYSTEMDhttp://coolshell.cn/articles/17998.html 要说清 Systemd,得先从 Linux 操作系统的启动说起.Linux 操作系 ... 
- WebDriver与文件系统
			1.屏幕截屏操作:其接口函数是TakesScreenshot.该功能是在运行测试用例的过程中,需要验证某个元素的状态或者显示的数值时,可以将屏幕截取下来进行对比:或者在异常或者错误发生的时候将屏幕截取 ... 
- 用stm32f10x建立新的工程重要步骤
			stm32f10x系列新建空的工程主要原理: 1.添加启动文件 不同的芯片类型的启动文件的容量是不同的,选择适合该芯片的容量作为启动文件. 注意:启动文件是汇编语言编写的,所以文件的后缀名为.s 2. ... 
- 从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码
			首发于公众号:计算机视觉life 旗下知识星球「从零开始学习SLAM」 这可能是最清晰讲解g2o代码框架的文章 理解图优化,一步步带你看懂g2o框架 小白:师兄师兄,最近我在看SLAM的优化算法,有种 ... 
- #WEB安全基础 : HTTP协议 | 0x0 TCP/IP四层结构
			学完HTML/CSS了? 做了这么多网页,但是你知道它们是怎么工作的吗? 作为你的朋友,我也对这些东西感兴趣,在写博客的同时也在和你一起学. 废话少说,进入正题 网络中的通信包括两个端分别为:客户端( ... 
- 下载文件 utils
			package cn.itcast.bos.utils; import java.io.IOException; import java.net.URLEncoder; import sun. ... 
- python3内置的tkinter参数释疑
			最近涉及到需要实现一个桌面UI的小游戏,所以就翻看了一些文档. 当然有介绍使用pyQT5的,但是本机安装的是python3.4,不想卸载掉这个版本,暂时还不能使用pyQT5. pyQT5需要pytho ... 
