( 转) Awesome Image Captioning
Awesome Image Captioning
2018-12-03 19:19:56
From: https://github.com/zhjohnchan/awesome-image-captioning
Papers
2010
- I2t: Image parsing to text description - Yao B Z et al, P IEEE 2011.
2011
- Im2Text: Describing Images Using 1 Million Captioned Photographs - Ordonez V et al, NIPS 2011. [project web]
2014
- Deep Captioning with Multimodal Recurrent Neural Networks - Mao J et al, arXiv preprint 2014.
2015
- Show and Tell: A Neural Image Caption Generator - Vinyals O et al, CVPR 2015. [code] [code]
- Deep Visual-Semantic Alignments for Generating Image Descriptions - Karpathy A et al, CVPR 2015. [project web] [code]
- Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation - Chen X et al, CVPR 2015.
- Long-term Recurrent Convolutional Networks for Visual Recognition and Description - Donahue J et al, CVPR 2015. [code][project web]
- Guiding the Long-Short Term Memory Model for Image Caption Generation - Jia X et al, ICCV 2015.
- Learning like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images - Mao J et al, ICCV 2015. [code]
- Expressing an Image Stream with a Sequence of Natural Sentences - Park C C et al, NIPS 2015. [code]
- Show, Attend and Tell: Neural Image Caption Generation with Visual Attention - Xu K et al, ICML 2015. [project] [code]
- Order-Embeddings of Images and Language - Vendrov I et al, arXiv preprint 2015. [code]
- Generating Images from Captions with Attention - Mansimov E et al, arXiv preprint 2015. [code]
- Learning FRAME Models Using CNN Filters for Knowledge Visualization - Lu Y, et al, arXiv preprint 2015. [code]
- Aligning where to see and what to tell: image caption with region-based attention and scene factorization - Jin J et al, arXiv preprint 2015.
2016
- Image captioning with semantic attention - You Q et al, CVPR 2016.
- DenseCap: Fully Convolutional Localization Networks for Dense Captioning - Johnson J et al, CVPR 2016. [code]
- What value do explicit high level concepts have in vision to language problems? - Wu Q et al, CVPR 2016.
- SPICE: Semantic Propositional Image Caption Evaluation - Anderson P et al, ECCV 2016. [code]
- Image Captioning with Deep Bidirectional LSTMs - Wang C et al, ACMMM 2016. [code]
- phi-LSTM: A Phrase-based Hierarchical LSTM Model for Image Captioning - Tan Y H et al, ACCV 2016.
- Multimodal Pivots for Image Caption Translation - Hitschler J et al, ACL 2016.
- Image Caption Generation with Text-Conditional Semantic Attention - Zhou L et al, arXiv preprint 2016. [code]
- DeepDiary: Automatic Caption Generation for Lifelogging Image Streams - Fan C et al, arXiv preprint 2016.
- Learning to generalize to new compositions in image understanding - Atzmon Y et al, arXiv preprint 2016.
- Generating captions without looking beyond objects - Heuer H et al, arXiv preprint 2016.
- Bootstrap, Review, Decode: Using Out-of-Domain Textual Data to Improve Image Captioning - Chen W et al, arXiv preprint 2016.
- Recurrent Image Captioner: Describing Images with Spatial-Invariant Transformation and Attention Filtering - Liu H et al, arXiv preprint 2016.
- Recurrent Highway Networks with Language CNN for Image Captioning - Gu J et al, arXiv preprint 2016.
2017
- Captioning Images with Diverse Objects - Venugopalan S et al, CVPR 2017.
- Top-down Visual Saliency Guided by Captions - Ramanishka V et al, CVPR 2017. [code]
- Self-Critical Sequence Training for Image Captioning - Steven J et al, CVPR 2017.
- Dense Captioning with Joint Inference and Visual Context - Yang L et al, CVPR 2017.
- Skeleton Key: Image Captioning by Skeleton-Attribute Decomposition - Yufei W et al, CVPR 2017.
- A Hierarchical Approach for Generating Descriptive Image Paragraphs - Krause J et al, CVPR 2017.
- Deep Reinforcement Learning-based Image Captioning with Embedding Reward - Ren Z et al, CVPR 2017.
- Incorporating Copying Mechanism in Image Captioning for Learning Novel Objects - Ting Y et al, CVPR 2017.
- Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning - Lu J et al, CVPR 2017. [code]
- Attend to You: Personalized Image Captioning with Context Sequence Memory Networks - CC Park et al, CVPR 2017. [code]
- SCA-CNN: Spatial and channel-wise attention in convolutional networks for image captioning - Chen L et al, CVPR 2017.
- Bidirectional Beam Search: Forward-Backward Inference in Neural Sequence Models for Fill-In-The-Blank Image Captioning- Qing S et al, CVPR 2017.
- Areas of Attention for Image Captioning - Pedersoli M et al, ICCV 2017.
- Boosting Image Captioning with Attributes - Yao T et al, ICCV 2017.
- An Empirical Study of Language CNN for Image Captioning - Gu J et al, ICCV 2017.
- Improved Image Captioning via Policy Gradient Optimization of SPIDEr - Liu S et al, ICCV 2017.
- Towards Diverse and Natural Image Descriptions via a Conditional GAN - Dai B et al, ICCV 2017.
- Paying Attention to Descriptions Generated by Image Captioning Models - Tavakoliy H R et al, ICCV 2017.
- Show, Adapt and Tell: Adversarial Training of Cross-domain Image Captioner - Chen T H et al, ICCV 2017.
- Image Caption with Global-Local Attention - Li L et al, AAAI 2017.
- Reference Based LSTM for Image Captioning - Chen M et al, AAAI 2017.
- Attention Correctness in Neural Image Captioning - Liu C et al, AAAI 2017.
- Text-guided Attention Model for Image Captioning - Mun J et al, AAAI 2017.
- Contrastive Learning for Image Captioning - Dai B et al, NIPS 2017.
- Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge - Vinyals O et al, TPAMI 2017. [code]
- MAT: A Multimodal Attentive Translator for Image Captioning - Liu C et al, arXiv preprint 2017.
- Punny Captions: Witty Wordplay in Image Descriptions - Chandrasekaran A et al, arXiv preprint 2017.
- Actor-Critic Sequence Training for Image Captioning - Zhang L et al, arXiv preprint 2017.
- What is the Role of Recurrent Neural Networks (RNNs) in an Image Caption Generator? - Tanti M et al, arXiv preprint 2017.
- Self-Guiding Multimodal LSTM - when we do not have a perfect training dataset for image captioning - Xian Y et al, arXiv preprint 2017.
- Phrase-based Image Captioning with Hierarchical LSTM Model - Tan Y H et al, arXiv preprint 2017.
- Show-and-Fool: Crafting Adversarial Examples for Neural Image Captioning - Chen H et al, arXiv preprint 2017.
2018
- Neural Baby Talk - Lu J et al, CVPR 2018.
- Convolutional Image Captioning - Aneja J et al, CVPR 2018.
- Learning to Evaluate Image Captioning - Cui Y et al, CVPR 2018.
- Discriminability Objective for Training Descriptive Captions - Luo R et al, CVPR 2018.
- SemStyle: Learning to Generate Stylised Image Captions using Unaligned Text - Mathews A et al, CVPR 2018.
- Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering - Anderson P et al, CVPR 2018.
- GroupCap: Group-Based Image Captioning With Structured Relevance and Diversity Constraints- Chen F et al, CVPR 2018.
- Unpaired Image Captioning by Language Pivoting - Gu J et al, ECCV 2018.
- Recurrent Fusion Network for Image Captioning - Jiang W et al, ECCV 2018.
- Rethinking the Form of Latent States in Image Captioning - Dai B et al, ECCV 2018.
- Learning to Guide Decoding for Image Captioning - Jiang W et al, AAAI 2018.
- Stack-Captioning: Coarse-to-Fine Learning for Image Captioning - Gu J et al, AAAI 2018.
- Temporal-difference Learning with Sampling Baseline for Image Captioning - Chen H et al, AAAI 2018.
- Partially-Supervised Image Captioning - Anderson P et al, NIPS 2018.
- A Neural Compositional Paradigm for Image Captioning - Dai B et al, NIPS 2018.
- Defoiling Foiled Image Captions - Wang J et al, NAACL preprint 2018.
- Object Counts! Bringing Explicit Detections Back into Image Captioning - Aneja J et al, NAACL 2018.
- Conceptual Captions: A Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning - Sharma P et al, ACL 2018. [code]
- Attacking visual language grounding with adversarial examples: A case study on neural image captioning - Chen H et al, ACL 2018.
- Improved Image Captioning with Adversarial Semantic Alignment - Melnyk I et al, arXiv preprint 2018.
- Improving Image Captioning with Conditional Generative Adversarial Nets - Chen C et al, arXiv preprint 2018.
- CNN+CNN: Convolutional Decoders for Image Captioning - Wang Q et al, arXiv preprint 2018.
- Diverse and Controllable Image Captioning with Part-of-Speech Guidance - Deshpande A et al, arXiv preprint 2018.
2019
- Meta Learning for Image Captioning - Li N et al, AAAI 2019.
- Learning Object Context for Dense Captioning - Li X et al, AAAI 2019.
- Hierarchical Attention Network for Image Captioning - Wang W et al, AAAI 2019.
- Deliberate Residual based Attention Network for Image Captioning - Gao L et al, AAAI 2019.
- Improving Image Captioning with Conditional Generative Adversarial Nets - Chen C et al, AAAI 2019.
- Connecting Language to Images: A Progressive Attention-Guided Network for Simultaneous Image Captioning and Language Grounding - Song L et al, AAAI 2019.
( 转) Awesome Image Captioning的更多相关文章
- Paper Read: Convolutional Image Captioning
Convolutional Image Captioning 2018-11-04 20:42:07 Paper: http://openaccess.thecvf.com/content_cvpr_ ...
- [Paper Reading] Image Captioning using Deep Neural Architectures (arXiv: 1801.05568v1)
Main Contributions: A brief introduction about two different methods (retrieval based method and gen ...
- 视频描述(Video Captioning)调研
Video Analysis 相关领域介绍之Video Captioning(视频to文字描述)http://blog.csdn.net/wzmsltw/article/details/7119238 ...
- Paper Reading - Deep Captioning with Multimodal Recurrent Neural Networks ( m-RNN ) ( ICLR 2015 ) ★
Link of the Paper: https://arxiv.org/pdf/1412.6632.pdf Main Points: The authors propose a multimodal ...
- [ Continuously Update ] The Paper List of Image / Video Captioning
Papers Published in 2018 Convolutional Image Captioning - Jyoti Aneja et al., CVPR 2018 - [ Paper Re ...
- Paper Reading - CNN+CNN: Convolutional Decoders for Image Captioning
Link of the Paper: https://arxiv.org/abs/1805.09019 Innovations: The authors propose a CNN + CNN fra ...
- Paper Reading - Learning to Evaluate Image Captioning ( CVPR 2018 ) ★
Link of the Paper: https://arxiv.org/abs/1806.06422 Innovations: The authors propose a novel learnin ...
- Paper Reading - Convolutional Image Captioning ( CVPR 2018 )
Link of the Paper: https://arxiv.org/abs/1711.09151 Motivation: LSTM units are complex and inherentl ...
- 第九讲_图像生成 Image Captioning
第九讲_图像生成 Image Captioning 生成式对抗网络 Generative Adversarial network 学习数据分布:概率密度函数估计+数据样本生成 生成式模型是共生关系,判 ...
随机推荐
- JBPM工作流(七)——详解流程图
概念: 流程图的组成: a. 活动 Activity / 节点 Node b. 流转 Transition / 连线(单向箭头) c. 事件 1.流转(Transition) a) 一般情况一个活动中 ...
- 【C++ 继承与派生/知识梳理】
为什么引入继承派生 代码重用扩充 软件的复用 层次分类 派生类的语法定义 class 派生类名(1):继承方式(2) 基类名(3){ 派生成员声明:} *(1)一个派生类——>多个基类,多继 ...
- CEditUI 控件使用
SetLimitText(UINT nMax ) //设置文本限制字符数 参数为nMax为控件可接受的文本最大字节数 GetTextLength() //获得文本长度 参考文档:http://www ...
- js设计模式(四)---迭代器模式
定义: 迭代器模式是指提供一种方法,顺序访问一个聚合对象中的各个元素,而又不需要暴露该对象的内部表示,迭代器模式可以把迭代的过程从业务逻辑中分离出来,使用迭代器模式,即使不关心对象的内部构造,也可以按 ...
- python语法_注释
#加需要注释的内容,#号后面的单行注释 #这一段注释 左右各三个注释单引号或者双引号 中间的内容为注释,可以包含多行 '''这一段注释''' """这一段注释" ...
- java动态加载配置文件(申明:来源于网络)
java动态加载配置文件 地址:http://blog.csdn.net/longvs/article/details/9361449
- ASP.NET Core ResponseCaching:基于 VaryByHeader 定制缓存 Key
ASP.NET Core ResponseCaching 提供了缓存http响应内容的能力,通过它可以在本地内存中直接缓存http响应内容,这是速度最快的服务端缓存,省却了网络传输与生成响应内容的开销 ...
- Gym 101873D - Pants On Fire - [warshall算法求传递闭包]
题目链接:http://codeforces.com/gym/101873/problem/D 题意: 给出 $n$ 个事实,表述为 "XXX are worse than YYY" ...
- 我对于B-树索引的内部结构与索引类型所做的笔记
图 3-1 B-树索引的内部结构 分支块和页块 B-树索引有两种类型的块: 用于查找的分支块和用于存储值的叶块.B-树索引的上层分支块包含指向下层索引块的索引数据.在图 3-1 中,根分支块包含条目 ...
- 使用APScheduler启动Django服务时自动运行脚本(可设置定时运行)
Django搭建的服务器一般都用作WEB网站进行访问,通常的形式是用户访问网站或点击按钮发送请求,Django检测到请求后进行相应的试图函数处理后返回页面给用户. 但是,我们有时会需要有一些后台自动运 ...