1、集群节点宕机
Nimbus服务器
  单点故障,大部分时间是闲置的,在supervisor挂掉时会影响,所以宕机影响不大,重启即可
非Nimbus服务器
  故障时,该节点上所有Task任务都会超时,Nimbus会将这些Task任务重新分配到其他服务器上运行

2、进程挂掉
Worker
  挂掉时,Supervisor会重新启动这个进程。如果启动过程中仍然一直失败,并且无法向Nimbus发送心跳,Nimbus会将该Worker重新分配到其他服务器上
Supervisor
  无状态(所有的状态信息都存放在Zookeeper中来管理)
  快速失败(每当遇到任何异常情况,都会自动毁灭)
Nimbus
  无状态(所有的状态信息都存放在Zookeeper中来管理)
  快速失败(每当遇到任何异常情况,都会自动毁灭)

3、消息的完整性
从Spout中发出的Tuple,以及基于他所产生Tuple,由这些消息就构成了一棵tuple树,当这棵tuple树发送完成,并且树当中每一条消息都被正确处理,就表明spout发送消息被“完整处理”,即消息的完整性,storm使用Acker确保消息完整性,Acker是拓扑当中特殊的一些任务,负责跟踪每个Spout发出的Tuple的DAG(有向无环图)
Acker分为ack确认机制和fail失败处理机制,Spout作为数据源,当拓扑中bolt处理失败时该怎么办?Acker机制可以重发数据到bolt进行重新处理。

看下面的例子:

MessageSpout  ---->   split-bolt  ---->    write-bolt

MessageTopology
package bhz.topology;

import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.TopologyBuilder;
import bhz.bolt.SpliterBolt;
import bhz.bolt.WriterBolt;
import bhz.spout.MessageSpout; public class MessageTopology { public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new MessageSpout());
builder.setBolt("split-bolt", new SpliterBolt()).shuffleGrouping("spout");
builder.setBolt("write-bolt", new WriterBolt()).shuffleGrouping("split-bolt");
//本地配置
Config config = new Config();
config.setDebug(false);
LocalCluster cluster = new LocalCluster();
System.out.println(cluster);
cluster.submitTopology("message", config, builder.createTopology());
Thread.sleep(10000);
cluster.killTopology("message");
cluster.shutdown();
}
}

MessageSpout

package bhz.spout;

import java.util.Map;

import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichSpout;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values; public class MessageSpout implements IRichSpout { private static final long serialVersionUID = 1L; private int index = 0; private String[] subjects = new String[]{
"groovy,oeacnbase",
"openfire,restful",
"flume,activiti",
"hadoop,hbase",
"spark,sqoop"
}; private SpoutOutputCollector collector; @Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
this.collector = collector;
} @Override
public void nextTuple() {
if(index < subjects.length){
String sub = subjects[index];
//发送信息参数1 为数值, 参数2为msgId
collector.emit(new Values(sub), index);
index++;
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("subjects"));
}
//当bolt 处理成功 ack确认 spout执行ack方法
@Override
public void ack(Object msgId) {
System.out.println("【消息发送成功!!!】 (msgId = " + msgId +")");
}
//当bolt处理失败时,spout调用fail方法,进行重发处理
@Override
public void fail(Object msgId) {
System.out.println("【消息发送失败!!!】 (msgId = " + msgId +")");
System.out.println("【重发进行中...】");
collector.emit(new Values(subjects[(Integer) msgId]), msgId);
System.out.println("【重发成功!!!】");
} @Override
public void close() { } @Override
public void activate() { } @Override
public void deactivate() { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} }

SpliterBolt

package bhz.bolt;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map; import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values; public class SpliterBolt implements IRichBolt { private static final long serialVersionUID = 1L; private OutputCollector collector; @Override
public void prepare(Map config, TopologyContext context, OutputCollector collector) {
this.collector = collector;
} private boolean flag = false; @Override
public void execute(Tuple tuple) {
try {
String subjects = tuple.getStringByField("subjects"); if(!flag && subjects.equals("flume,activiti")){
flag = true;
int a = 1/0;
} String[] words = subjects.split(",");
//List<String> list = new ArrayList<String>();
//int index = 0;
for (String word : words) {
//注意这里循环发送消息,要携带tuple对象,用于处理异常时重发策略
collector.emit(tuple, new Values(word));
//list.add(word);
//index ++;
}
//collector.emit(tuple, new Values(list));
collector.ack(tuple);//通知spout处理成功
} catch (Exception e) {
e.printStackTrace();
collector.fail(tuple);//通知spout 处理失败
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
} @Override
public void cleanup() { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} }

WriterBolt

package bhz.bolt;

import java.io.FileWriter;
import java.io.IOException;
import java.util.List;
import java.util.Map; import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values; public class WriterBolt implements IRichBolt { private static final long serialVersionUID = 1L; private FileWriter writer; private OutputCollector collector; @Override
public void prepare(Map config, TopologyContext context, OutputCollector collector) {
this.collector = collector;
try {
writer = new FileWriter("d://message.txt");
} catch (IOException e) {
e.printStackTrace();
}
} private boolean flag = false; @Override
public void execute(Tuple tuple) {
String word = tuple.getString(0);
// List<String> list = (List<String>)tuple.getValueByField("word");
// System.out.println("======================" + list);
try {
if(!flag && word.equals("hadoop")){
flag = true;
int a = 1/0;
}
writer.write(word);
writer.write("\r\n");
writer.flush();
} catch (Exception e) {
e.printStackTrace();
collector.fail(tuple);//通知spout处理失败
}
collector.emit(tuple, new Values(word));
collector.ack(tuple);//通知spout处理成功
} @Override
public void cleanup() { } @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} }

spout重发机制会带来一个问题:数据重复消费,看上面的例子当WriterBolt执行失败的时候,spout 将hadoop,hbase重发,那么hbase会被WriterBolt再执行一次,目前storm对此没有保障机制,按照业务设计的通用做法就是使用幂等性(比如使用唯一性ID),防止重复消费数据。

大数据处理框架之Strom:容错机制的更多相关文章

  1. 大数据处理框架之Strom: Storm----helloword

    大数据处理框架之Strom: Storm----helloword Storm按照设计好的拓扑流程运转,所以写代码之前要先设计好拓扑图.这里写一个简单的拓扑: 第一步:创建一个拓扑类含有main方法的 ...

  2. 大数据处理框架之Strom:认识storm

    Storm是分布式实时计算系统,用于数据的实时分析.持续计算,分布式RPC等. (备注:5种常见的大数据处理框架:· 仅批处理框架:Apache Hadoop:· 仅流处理框架:Apache Stor ...

  3. 大数据处理框架之Strom: Storm拓扑的并行机制和通信机制

    一.并行机制 Storm的并行度 ,通过提高并行度可以提高storm程序的计算能力. 1.组件关系:Supervisor node物理节点,可以运行1到多个worker,不能超过supervisor. ...

  4. 大数据处理框架之Strom:Flume+Kafka+Storm整合

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 apache-flume-1.6.0 ...

  5. 大数据处理框架之Strom:DRPC

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 一.DRPC DRPC:Distri ...

  6. 大数据处理框架之Strom:Storm集群环境搭建

    搭建环境 Red Hat Enterprise Linux Server release 7.3 (Maipo)      zookeeper-3.4.11 jdk1.7.0_80      Pyth ...

  7. 大数据处理框架之Strom:事务

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 apache-flume-1.6.0 ...

  8. 大数据处理框架之Strom:redis storm 整合

    storm 引入redis ,主要是使用redis缓存库暂存storm的计算结果,然后redis供其他应用调用取出数据. 新建maven工程 pom.xml <project xmlns=&qu ...

  9. 大数据处理框架之Strom:kafka storm 整合

    storm 使用kafka做数据源,还可以使用文件.redis.jdbc.hive.HDFS.hbase.netty做数据源. 新建一个maven 工程: pom.xml <project xm ...

随机推荐

  1. win10下切换多个jdk版本

    1.每次切换时,修改JAVA_HOME变量 2.编辑path环境变量,如图所示,将%JAVA_HOME%\jre\bin和%JAVA_HOME%\bin移到最上边 3.在控制面板中打开java控制面板 ...

  2. 前端路由实现(history)

    HTML5 history 新增了两个 API:history.pushState 和 history.replaceState 两个 API 都接收三个参数: 1.状态对象(state object ...

  3. Linux查看访问IP

    Linux查看访问IP https://blog.csdn.net/tojohnonly/article/details/82772323

  4. 001-快速搭建Spring web应用【springboot 2.0.4】-gradle、springboot的启动过程分析、gradle多模块构建

    一.概述 学习<精通Spring MVC4>书籍笔记 二.笔记 1.快速构建Spring starter web项目几种方式 1>使用Spring Tool Suite生成Start ...

  5. 静态库lib和动态库dll相关总结

    1.静态链接库LIB和动态链接库DLL的区别 若采用静态链接库,lib 中的指令都全部被直接包含在最终生成的 EXE 文件中了.而动态动态链接库则不必被包含在最终 EXE 文件中,EXE 文件执行时可 ...

  6. 基于Apache Spark机器学习的客户流失预测

    流失预测是个重要的业务,通过预测哪些客户可能取消对服务的订阅来最大限度地减少客户流失.虽然最初在电信行业使用,但它已经成为银行,互联网服务提供商,保险公司和其他垂直行业的通用业务. 预测过程是大规模数 ...

  7. IOP知识点(5)

    1 检验规则 取“或”   2 IOP升级中心 2 IOP升级中心 http://10.110.17.12:8080/cloud-ops/#/environment/     admin 我修改了io ...

  8. 2018-2019-1 20189221 《Linux内核原理与分析》第八周作业

    2018-2019-1 20189221 <Linux内核原理与分析>第八周作业 实验七 编译链接过程 gcc –e –o hello.cpp hello.c / gcc -x cpp-o ...

  9. 25-Python3 错误和异常

    25-Python3 错误和异常 ''' 语法错误 ''' # while True print('hello,runoob') ''' 异常 ''' ##ZeroDivisionError # pr ...

  10. iOS 点击返回键崩溃的未解之谜

    1. iOS8出现. 2.点击进去下一层View,然后返回,再返回上一级的视图的时候奔溃. 3.只有点击进去一下层View的时候才出现. 4. 报错的是给一个未知对象发送这个消息 gestureRec ...