1、集群节点宕机
Nimbus服务器
  单点故障,大部分时间是闲置的,在supervisor挂掉时会影响,所以宕机影响不大,重启即可
非Nimbus服务器
  故障时,该节点上所有Task任务都会超时,Nimbus会将这些Task任务重新分配到其他服务器上运行

2、进程挂掉
Worker
  挂掉时,Supervisor会重新启动这个进程。如果启动过程中仍然一直失败,并且无法向Nimbus发送心跳,Nimbus会将该Worker重新分配到其他服务器上
Supervisor
  无状态(所有的状态信息都存放在Zookeeper中来管理)
  快速失败(每当遇到任何异常情况,都会自动毁灭)
Nimbus
  无状态(所有的状态信息都存放在Zookeeper中来管理)
  快速失败(每当遇到任何异常情况,都会自动毁灭)

3、消息的完整性
从Spout中发出的Tuple,以及基于他所产生Tuple,由这些消息就构成了一棵tuple树,当这棵tuple树发送完成,并且树当中每一条消息都被正确处理,就表明spout发送消息被“完整处理”,即消息的完整性,storm使用Acker确保消息完整性,Acker是拓扑当中特殊的一些任务,负责跟踪每个Spout发出的Tuple的DAG(有向无环图)
Acker分为ack确认机制和fail失败处理机制,Spout作为数据源,当拓扑中bolt处理失败时该怎么办?Acker机制可以重发数据到bolt进行重新处理。

看下面的例子:

MessageSpout  ---->   split-bolt  ---->    write-bolt

MessageTopology
package bhz.topology;

import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.TopologyBuilder;
import bhz.bolt.SpliterBolt;
import bhz.bolt.WriterBolt;
import bhz.spout.MessageSpout; public class MessageTopology { public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new MessageSpout());
builder.setBolt("split-bolt", new SpliterBolt()).shuffleGrouping("spout");
builder.setBolt("write-bolt", new WriterBolt()).shuffleGrouping("split-bolt");
//本地配置
Config config = new Config();
config.setDebug(false);
LocalCluster cluster = new LocalCluster();
System.out.println(cluster);
cluster.submitTopology("message", config, builder.createTopology());
Thread.sleep(10000);
cluster.killTopology("message");
cluster.shutdown();
}
}

MessageSpout

package bhz.spout;

import java.util.Map;

import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichSpout;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values; public class MessageSpout implements IRichSpout { private static final long serialVersionUID = 1L; private int index = 0; private String[] subjects = new String[]{
"groovy,oeacnbase",
"openfire,restful",
"flume,activiti",
"hadoop,hbase",
"spark,sqoop"
}; private SpoutOutputCollector collector; @Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
this.collector = collector;
} @Override
public void nextTuple() {
if(index < subjects.length){
String sub = subjects[index];
//发送信息参数1 为数值, 参数2为msgId
collector.emit(new Values(sub), index);
index++;
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("subjects"));
}
//当bolt 处理成功 ack确认 spout执行ack方法
@Override
public void ack(Object msgId) {
System.out.println("【消息发送成功!!!】 (msgId = " + msgId +")");
}
//当bolt处理失败时,spout调用fail方法,进行重发处理
@Override
public void fail(Object msgId) {
System.out.println("【消息发送失败!!!】 (msgId = " + msgId +")");
System.out.println("【重发进行中...】");
collector.emit(new Values(subjects[(Integer) msgId]), msgId);
System.out.println("【重发成功!!!】");
} @Override
public void close() { } @Override
public void activate() { } @Override
public void deactivate() { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} }

SpliterBolt

package bhz.bolt;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map; import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values; public class SpliterBolt implements IRichBolt { private static final long serialVersionUID = 1L; private OutputCollector collector; @Override
public void prepare(Map config, TopologyContext context, OutputCollector collector) {
this.collector = collector;
} private boolean flag = false; @Override
public void execute(Tuple tuple) {
try {
String subjects = tuple.getStringByField("subjects"); if(!flag && subjects.equals("flume,activiti")){
flag = true;
int a = 1/0;
} String[] words = subjects.split(",");
//List<String> list = new ArrayList<String>();
//int index = 0;
for (String word : words) {
//注意这里循环发送消息,要携带tuple对象,用于处理异常时重发策略
collector.emit(tuple, new Values(word));
//list.add(word);
//index ++;
}
//collector.emit(tuple, new Values(list));
collector.ack(tuple);//通知spout处理成功
} catch (Exception e) {
e.printStackTrace();
collector.fail(tuple);//通知spout 处理失败
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
} @Override
public void cleanup() { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} }

WriterBolt

package bhz.bolt;

import java.io.FileWriter;
import java.io.IOException;
import java.util.List;
import java.util.Map; import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values; public class WriterBolt implements IRichBolt { private static final long serialVersionUID = 1L; private FileWriter writer; private OutputCollector collector; @Override
public void prepare(Map config, TopologyContext context, OutputCollector collector) {
this.collector = collector;
try {
writer = new FileWriter("d://message.txt");
} catch (IOException e) {
e.printStackTrace();
}
} private boolean flag = false; @Override
public void execute(Tuple tuple) {
String word = tuple.getString(0);
// List<String> list = (List<String>)tuple.getValueByField("word");
// System.out.println("======================" + list);
try {
if(!flag && word.equals("hadoop")){
flag = true;
int a = 1/0;
}
writer.write(word);
writer.write("\r\n");
writer.flush();
} catch (Exception e) {
e.printStackTrace();
collector.fail(tuple);//通知spout处理失败
}
collector.emit(tuple, new Values(word));
collector.ack(tuple);//通知spout处理成功
} @Override
public void cleanup() { } @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} }

spout重发机制会带来一个问题:数据重复消费,看上面的例子当WriterBolt执行失败的时候,spout 将hadoop,hbase重发,那么hbase会被WriterBolt再执行一次,目前storm对此没有保障机制,按照业务设计的通用做法就是使用幂等性(比如使用唯一性ID),防止重复消费数据。

大数据处理框架之Strom:容错机制的更多相关文章

  1. 大数据处理框架之Strom: Storm----helloword

    大数据处理框架之Strom: Storm----helloword Storm按照设计好的拓扑流程运转,所以写代码之前要先设计好拓扑图.这里写一个简单的拓扑: 第一步:创建一个拓扑类含有main方法的 ...

  2. 大数据处理框架之Strom:认识storm

    Storm是分布式实时计算系统,用于数据的实时分析.持续计算,分布式RPC等. (备注:5种常见的大数据处理框架:· 仅批处理框架:Apache Hadoop:· 仅流处理框架:Apache Stor ...

  3. 大数据处理框架之Strom: Storm拓扑的并行机制和通信机制

    一.并行机制 Storm的并行度 ,通过提高并行度可以提高storm程序的计算能力. 1.组件关系:Supervisor node物理节点,可以运行1到多个worker,不能超过supervisor. ...

  4. 大数据处理框架之Strom:Flume+Kafka+Storm整合

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 apache-flume-1.6.0 ...

  5. 大数据处理框架之Strom:DRPC

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 一.DRPC DRPC:Distri ...

  6. 大数据处理框架之Strom:Storm集群环境搭建

    搭建环境 Red Hat Enterprise Linux Server release 7.3 (Maipo)      zookeeper-3.4.11 jdk1.7.0_80      Pyth ...

  7. 大数据处理框架之Strom:事务

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 apache-flume-1.6.0 ...

  8. 大数据处理框架之Strom:redis storm 整合

    storm 引入redis ,主要是使用redis缓存库暂存storm的计算结果,然后redis供其他应用调用取出数据. 新建maven工程 pom.xml <project xmlns=&qu ...

  9. 大数据处理框架之Strom:kafka storm 整合

    storm 使用kafka做数据源,还可以使用文件.redis.jdbc.hive.HDFS.hbase.netty做数据源. 新建一个maven 工程: pom.xml <project xm ...

随机推荐

  1. Java ServiceLoader(SPI)学习

    1. 几个不错的关于ServiceLoader的文章,大家可以先参考一下 1) http://www.myexception.cn/program/1355384.html 这篇的后面的问题分析不错 ...

  2. Python开发【模块】:aiohttp(一)

    AIOHTTP 用于asyncio和Python的异步HTTP客户端/服务器 主要特点: 支持客户端和HTTP服务器. 支持服务器WebSockets和 客户端WebSockets开箱即用,没有回调地 ...

  3. 7620N路由器刷openwrt系统并配置***

    之前一直用goAgent***,主要用gmail.逛逛twitter.youtube.维基百科.加速stackoverflow等等.但goAgent只能PC使用,手机.iPad都不能用,直到我拿到了一 ...

  4. linux下修改/etc/profile文件

    inux下修改/etc/profile文件 2017年01月06日 14:30:12 白昙 阅读数:8540 标签: linux 更多 个人分类: linux   通常情况下,/etc/profile ...

  5. TCP路由网络通信

    路由器 实现跨网段通信   路由器的工作原理是基于路由器中的路由表来实现数据包的路径选择 当路由器收到一个数据包的时候,会读取数据包的目标IP地址,根据目标IP地址来匹配路由表中的规则 单个路由器不会 ...

  6. 数据库---mysql的介绍和安装

    MySQL数据库 一.简介: mysql是数据库管理软件:套接字:服务端,客户端 支持并发:操作得是共享得数据 处理锁,数据安全,性能 用别人得软件,得照着别人得规范,组织自己得语法规则 二.概述: ...

  7. DataTable 指定位置添加列

    dt.Columns.Add("id").SetOrdinal(指定位置);

  8. vue中indexDB的应用

    // indexedDB.js,浏览器本地数据库操作 export default { // indexedDB兼容 indexedDB: window.indexedDB || window.web ...

  9. 64位的pyd报"ImportError: No module named"错误

    今天仿照32位的ModuleA.cp35-win32.pyd,制作了64位的pyd.很随意地命名为ModuleA.cp35-win64.pyd,然后在64环境里编译.发现一直报"Import ...

  10. C 逗號表達式 與返回值

    逗號表達式的返回值是最後一個表達式的值 int z; z=(,); printf("%d\n",z);//6 int a; printf(*,a*,a+));//20 a=3*5, ...