1、集群节点宕机
Nimbus服务器
  单点故障,大部分时间是闲置的,在supervisor挂掉时会影响,所以宕机影响不大,重启即可
非Nimbus服务器
  故障时,该节点上所有Task任务都会超时,Nimbus会将这些Task任务重新分配到其他服务器上运行

2、进程挂掉
Worker
  挂掉时,Supervisor会重新启动这个进程。如果启动过程中仍然一直失败,并且无法向Nimbus发送心跳,Nimbus会将该Worker重新分配到其他服务器上
Supervisor
  无状态(所有的状态信息都存放在Zookeeper中来管理)
  快速失败(每当遇到任何异常情况,都会自动毁灭)
Nimbus
  无状态(所有的状态信息都存放在Zookeeper中来管理)
  快速失败(每当遇到任何异常情况,都会自动毁灭)

3、消息的完整性
从Spout中发出的Tuple,以及基于他所产生Tuple,由这些消息就构成了一棵tuple树,当这棵tuple树发送完成,并且树当中每一条消息都被正确处理,就表明spout发送消息被“完整处理”,即消息的完整性,storm使用Acker确保消息完整性,Acker是拓扑当中特殊的一些任务,负责跟踪每个Spout发出的Tuple的DAG(有向无环图)
Acker分为ack确认机制和fail失败处理机制,Spout作为数据源,当拓扑中bolt处理失败时该怎么办?Acker机制可以重发数据到bolt进行重新处理。

看下面的例子:

MessageSpout  ---->   split-bolt  ---->    write-bolt

MessageTopology
package bhz.topology;

import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.TopologyBuilder;
import bhz.bolt.SpliterBolt;
import bhz.bolt.WriterBolt;
import bhz.spout.MessageSpout; public class MessageTopology { public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new MessageSpout());
builder.setBolt("split-bolt", new SpliterBolt()).shuffleGrouping("spout");
builder.setBolt("write-bolt", new WriterBolt()).shuffleGrouping("split-bolt");
//本地配置
Config config = new Config();
config.setDebug(false);
LocalCluster cluster = new LocalCluster();
System.out.println(cluster);
cluster.submitTopology("message", config, builder.createTopology());
Thread.sleep(10000);
cluster.killTopology("message");
cluster.shutdown();
}
}

MessageSpout

package bhz.spout;

import java.util.Map;

import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichSpout;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values; public class MessageSpout implements IRichSpout { private static final long serialVersionUID = 1L; private int index = 0; private String[] subjects = new String[]{
"groovy,oeacnbase",
"openfire,restful",
"flume,activiti",
"hadoop,hbase",
"spark,sqoop"
}; private SpoutOutputCollector collector; @Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
this.collector = collector;
} @Override
public void nextTuple() {
if(index < subjects.length){
String sub = subjects[index];
//发送信息参数1 为数值, 参数2为msgId
collector.emit(new Values(sub), index);
index++;
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("subjects"));
}
//当bolt 处理成功 ack确认 spout执行ack方法
@Override
public void ack(Object msgId) {
System.out.println("【消息发送成功!!!】 (msgId = " + msgId +")");
}
//当bolt处理失败时,spout调用fail方法,进行重发处理
@Override
public void fail(Object msgId) {
System.out.println("【消息发送失败!!!】 (msgId = " + msgId +")");
System.out.println("【重发进行中...】");
collector.emit(new Values(subjects[(Integer) msgId]), msgId);
System.out.println("【重发成功!!!】");
} @Override
public void close() { } @Override
public void activate() { } @Override
public void deactivate() { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} }

SpliterBolt

package bhz.bolt;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map; import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values; public class SpliterBolt implements IRichBolt { private static final long serialVersionUID = 1L; private OutputCollector collector; @Override
public void prepare(Map config, TopologyContext context, OutputCollector collector) {
this.collector = collector;
} private boolean flag = false; @Override
public void execute(Tuple tuple) {
try {
String subjects = tuple.getStringByField("subjects"); if(!flag && subjects.equals("flume,activiti")){
flag = true;
int a = 1/0;
} String[] words = subjects.split(",");
//List<String> list = new ArrayList<String>();
//int index = 0;
for (String word : words) {
//注意这里循环发送消息,要携带tuple对象,用于处理异常时重发策略
collector.emit(tuple, new Values(word));
//list.add(word);
//index ++;
}
//collector.emit(tuple, new Values(list));
collector.ack(tuple);//通知spout处理成功
} catch (Exception e) {
e.printStackTrace();
collector.fail(tuple);//通知spout 处理失败
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
} @Override
public void cleanup() { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} }

WriterBolt

package bhz.bolt;

import java.io.FileWriter;
import java.io.IOException;
import java.util.List;
import java.util.Map; import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values; public class WriterBolt implements IRichBolt { private static final long serialVersionUID = 1L; private FileWriter writer; private OutputCollector collector; @Override
public void prepare(Map config, TopologyContext context, OutputCollector collector) {
this.collector = collector;
try {
writer = new FileWriter("d://message.txt");
} catch (IOException e) {
e.printStackTrace();
}
} private boolean flag = false; @Override
public void execute(Tuple tuple) {
String word = tuple.getString(0);
// List<String> list = (List<String>)tuple.getValueByField("word");
// System.out.println("======================" + list);
try {
if(!flag && word.equals("hadoop")){
flag = true;
int a = 1/0;
}
writer.write(word);
writer.write("\r\n");
writer.flush();
} catch (Exception e) {
e.printStackTrace();
collector.fail(tuple);//通知spout处理失败
}
collector.emit(tuple, new Values(word));
collector.ack(tuple);//通知spout处理成功
} @Override
public void cleanup() { } @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} }

spout重发机制会带来一个问题:数据重复消费,看上面的例子当WriterBolt执行失败的时候,spout 将hadoop,hbase重发,那么hbase会被WriterBolt再执行一次,目前storm对此没有保障机制,按照业务设计的通用做法就是使用幂等性(比如使用唯一性ID),防止重复消费数据。

大数据处理框架之Strom:容错机制的更多相关文章

  1. 大数据处理框架之Strom: Storm----helloword

    大数据处理框架之Strom: Storm----helloword Storm按照设计好的拓扑流程运转,所以写代码之前要先设计好拓扑图.这里写一个简单的拓扑: 第一步:创建一个拓扑类含有main方法的 ...

  2. 大数据处理框架之Strom:认识storm

    Storm是分布式实时计算系统,用于数据的实时分析.持续计算,分布式RPC等. (备注:5种常见的大数据处理框架:· 仅批处理框架:Apache Hadoop:· 仅流处理框架:Apache Stor ...

  3. 大数据处理框架之Strom: Storm拓扑的并行机制和通信机制

    一.并行机制 Storm的并行度 ,通过提高并行度可以提高storm程序的计算能力. 1.组件关系:Supervisor node物理节点,可以运行1到多个worker,不能超过supervisor. ...

  4. 大数据处理框架之Strom:Flume+Kafka+Storm整合

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 apache-flume-1.6.0 ...

  5. 大数据处理框架之Strom:DRPC

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 一.DRPC DRPC:Distri ...

  6. 大数据处理框架之Strom:Storm集群环境搭建

    搭建环境 Red Hat Enterprise Linux Server release 7.3 (Maipo)      zookeeper-3.4.11 jdk1.7.0_80      Pyth ...

  7. 大数据处理框架之Strom:事务

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 apache-flume-1.6.0 ...

  8. 大数据处理框架之Strom:redis storm 整合

    storm 引入redis ,主要是使用redis缓存库暂存storm的计算结果,然后redis供其他应用调用取出数据. 新建maven工程 pom.xml <project xmlns=&qu ...

  9. 大数据处理框架之Strom:kafka storm 整合

    storm 使用kafka做数据源,还可以使用文件.redis.jdbc.hive.HDFS.hbase.netty做数据源. 新建一个maven 工程: pom.xml <project xm ...

随机推荐

  1. P4827 [国家集训队] Crash 的文明世界

    传送门:洛谷 题目大意:设$$S(i)=\sum_{j=1}^ndis(i,j)^k$$,求$S(1),S(2),\ldots,S(n)$. 数据范围:$n\leq 50000,k\leq 150$ ...

  2. 获取APP和设备相关信息

    APP NAME: [[[NSBundle mainBundle] infoDictionary] objectForKey:@"CFBundleDisplayName"] APP ...

  3. Python字符串切片

    1.字符串切片:从字符串中取出相应的元素,重新组成一个新的字符串 语法: 字符串[    开始元素下标  :  结束元素下标  :  步长     ]   # 字符串的每个元素都有正负两种下标 步长: ...

  4. Python基础-编码与解码

      一.什么是编码 编码是指信息从一种形式或格式转换为另一种形式或格式的过程. 在计算机中,编码,简而言之,就是将人能够读懂的信息(通常称为明文)转换为计算机能够读懂的信息.众所周知,计算机能够读懂的 ...

  5. seller vue配置路径相对路径【组件 只写简单路径】

    在[webpack.base.conf.js]配置 'components': path.resolve(__dirname, '../src/components')

  6. Cell complex单元复合形

    概念 (1)Piecewise linear complex (PLC) 分段线性复合形 (2)Cell complex 单元复合形 [1] (元胞复合形) (3)Linear Cell Comple ...

  7. GIT中常用的命令

    最近项目中使用到了GIT,所以记录一下GIT中常用的命令. GIT使用的客户端有Git Bash:http://code.google.com/p/msysgit/ 还有乌龟TortoiseGit:h ...

  8. Raid5之后安装系统,挂载磁盘

    配置RAID5 略 2.U盘安装centos系统(我的版本是centos7.0) 这一步骤网上很多,可以参考这篇:http://jingyan.baidu.com/article/359911f571 ...

  9. 一文看懂POS收单中"MCC"是什么意思?

    MCC的前世今生! 是否经常听人提起过“MCC”?听起来如此高大上的词,背后有着怎样的知识内涵呢?您知道吗?今天,我们就一起来了解了解“MCC”的前世今生,让它也“接接地气”吧!商户类别码(简称MCC ...

  10. (转)以太坊 钱包 创建 导入 Keystore

    最近闲来无事 研究了下以太坊钱包 下边分享下 准备工作 : 需要用到的加密:BIP32 BIP39 BIP44 SCRYPT 加密算法 githab地址 https://github.com/Nova ...