【题解】 bzoj3105: [cqoi2013]新Nim游戏 (线性基+贪心)
Solution:
- 首先你要有一个前置技能:如果每堆石子异或和为\(0\),则先手比输
- 这题我们怎么做呢,因为我们没人要先取掉几堆,为了赢对方一定会使剩下的异或和为\(0\),那么我们就一定要取到剩下的石子堆无论怎么异或都到不了\(0\),换句话说就是要使剩下的石子堆任何子集异或和不为\(0\),这就显然是个线性基了
- 为了拿走最小,我们贪心地排一边序,从大的开始往线性基里加入就好了
- (我不知道为什么我一开始要加一堆奇奇怪怪的东西,删掉两行就AC了2333)
Code:
//It is coded by Ning_Mew on 5.29
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int maxn=107;
int n;
LL a[maxn],ans=0,x[maxn],tot=0;
bool cmp(const int &x,const int &y){return x>y;}
bool ins(LL k){
for(int i=63;i>=0;i--){
if((k>>i)&1){
if(!x[i]){x[i]=k;return true;}
else k=(k^x[i]);
}
}return false;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%lld",&a[i]);
}
sort(a+1,a+n+1,cmp);
for(int i=1;i<=n;i++){
if(ins(a[i]));else ans+=a[i],tot++;
}
if(tot==n-1)printf("-1\n");
else printf("%lld\n",ans);
return 0;
}
博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/Ning-Mew/,否则你会终生找不到妹子!!!
【题解】 bzoj3105: [cqoi2013]新Nim游戏 (线性基+贪心)的更多相关文章
- BZOJ3105:[CQOI2013]新Nim游戏(线性基,贪心)
Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴 ...
- BZOJ.3105.[CQOI2013]新Nim游戏(线性基 贪心 博弈论)
题目链接 如果后手想要胜利,那么在后手第一次取完石子后 可以使石子数异或和为0.那所有数异或和为0的线性基长啥样呢,不知道.. 往前想,后手可以取走某些石子使得剩下石子异或和为0,那不就是存在异或和为 ...
- [CQOI2013]新Nim游戏 线性基
题面 题面 题解 首先我们知道nim游戏先手必败当且仅当所有石堆异或和为0,因此我们的目标就是要使对手拿石堆的时候,无论如何都不能使剩下的石堆异或和为0. 对于一个局面,如果我们可以选取一些可以凑出0 ...
- 洛谷$P$4301 $[CQOI2013]$新$Nim$游戏 线性基+博弈论
正解:线性基 解题报告: 传送门! 这题其实就是个博弈论+线性基,,,而且博弈论还是最最基础的那个结论,然后线性基也是最最基础的那个板子$QwQ$ 首先做这题的话需要一点点儿博弈论的小技能,,,这题的 ...
- BZOJ 3105 [CQOI2013]新Nim游戏 ——线性基
[题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即 ...
- BZOJ 3105: [cqoi2013]新Nim游戏(线性基)
解题思路 \(nim\)游戏先手必胜的条件是异或和不为\(0\),也就是说第一个人拿走了若干堆后不管第二个人怎么拿都不能将剩余堆的异或和变成\(0\).考虑线性基,其实就是每个数对线性基都有贡献,任何 ...
- BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基
一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...
- BZOJ3105: [cqoi2013]新Nim游戏
题解: 线性基?类似于向量上的基底. 此题题解戳这里:http://blog.csdn.net/wyfcyx_forever/article/details/39477673 代码: #include ...
- BZOJ3105: [cqoi2013]新Nim游戏(Xor线性无关组)
Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴 ...
随机推荐
- Iframe和Frame中实现cookie跨域的方法(转载)
在Iframe和Frame中默认是不支持Cookie跨域的,但通过设置P3P协议相关的响应头可以解决这一问题.关于p3p协议: P3P: Platform for Privacy Preference ...
- 大数据入门第十七天——storm上游数据源 之kafka详解(三)其他问题
一.kafka文件存储机制 1.topic存储 在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序 ...
- 20155210 Exp9 Web安全基础实践
Exp9 Web安全基础实践 实验过程 开启webgoat 输入java -jar webgoat-container-7.1-exec.jar,来运行webgoat 在浏览器输入localhost: ...
- springboot redis 监听过期key值事件
redis 中的key值过期后,触发通知事件 1.创建springboot工程,创建监听类 maven配置 <dependencies> <dependency> <gr ...
- 【转】从Shell脚本内部将所有标准输出及标准错误显示在屏幕并同时写入文件的方法
如果全部都要重定向的话每一条命令后面>>并不方便,可以这么做.在开头就声明 exec 1>>$log_file表示将脚本中所有的正确输出全部追加到$log_file,错误信息会 ...
- Windows:查看IP地址,IP地址对应的机器名,占用的端口,以及占用该端口的应用程
Windows 服务器系列: Windows:查看IP地址,IP地址对应的机器名,占用的端口,以及占用该端口的应用程 Windows:使用Dos命令管理服务(Services) Windows:任务调 ...
- IIS充当反向代理转发请求到Kestrel
接着上篇博文为ASP.NetCore程序启用SSL的code,这篇将介绍如何用IIS充当反向代理的角色转发请求到Kestrel服务器 介绍 与ASP.NET不同,ASP.netCore使用的是自托管w ...
- zabbix监控docker容器状态
前言:前段时间在部署zabbix,有个需求就是需要监控容器的状态 也就是cpu 内存 io的占用,于是就自己写了一个脚本,以及模板,在这里分享一下 嘿嘿 : ) 废话我也就不多说,直接开始 首选,za ...
- ats透明代理
透明代理是拦截客户端和服务器之间的连接而不可见的代理能力(比如ats). 必须要有一个网关设备,所有网络流量都通过该设备从客户端传递到Internet(或外部云).网关负责有效的将ATS拼接到该流量的 ...
- 重磅发布丨乐维监控:全面兼容云平台,助力企业DevOps转型升级!
2019年伊始,我们迎来了乐维监控的又一重大功能更新——云平台监控,这将有效帮助企业将云上.云下数据聚合,方便统一化的监控管理与维护!未来,乐维监控每一次的产品功能及版本更新,我们都将第一时间于此发布 ...