题目传送门


题目描述

在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。

考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x4≠x1,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。

现在给出一些约束满足问题,请分别对它们进行判定。

输入输出格式

输入格式:

从文件prog.in中读入数据。

输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。

对于每个问题,包含若干行:

第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若e=0,则该约束条件为xi≠xj;

输出格式:

输出到文件 prog.out 中。

输出文件包括t行。

输出文件的第 k行输出一个字符串“ YES” 或者“ NO”(不包含引号,字母全部大写),“ YES” 表示输入中的第k个问题判定为可以被满足,“ NO” 表示不可被满足。

输入输出样例

输入样例#1:

2
2
1 2 1
1 2 0
2
1 2 1
2 1 1
输出样例#1:

NO
YES
输入样例#2:

2
3
1 2 1
2 3 1
3 1 1
4
1 2 1
2 3 1
3 4 1
1 4 0
输出样例#2:

YES
NO

说明

【样例解释1】

在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。

在第二个问题中,约束条件为:x1=x2,x1=x2。这两个约束条件是等价的,可以被同时满足。

【样例说明2】

在第一个问题中,约束条件有三个:x1=x2,x2=x3,x3=x1。只需赋值使得x1=x1=x1,即可同时满足所有的约束条件。

在第二个问题中,约束条件有四个:x1=x2,x2=x3,x3=x4,x4≠x1。由前三个约束条件可以推出x1=x2=x3=x4,然而最后一个约束条件却要求x1≠x4,因此不可被满足。

【数据范围】

【时限2s,内存512M】


  

  分析:一眼可知是并查集,问题就在离散化,数据范围肯定不能直接上。但是蒟蒻并不擅长离散化,一开始还好感人地打了个hash,搞了半天结果屏幕上wa声一片……然后翻了翻大佬们的博客,发现。。。模个数就行了(O.o)。。好吧,是我太蒻了。

  Code:

  

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<iomanip>
#include<algorithm>
using namespace std;
const int mod=;
const int N=1e5+;
int n,T,cnt,fa[mod+],rank[mod+];
struct Ques{int x,y;}a[N];
inline int read()
{
char ch=getchar();int num=;bool flag=false;
while(ch<''||ch>''){if(ch=='-')flag=true;ch=getchar();}
while(ch>=''&&ch<=''){num=num*+ch-'';ch=getchar();}
return flag?-num:num;
}
inline void ready()
{
cnt=;
for(int i=;i<=mod;i++)fa[i]=i;
for(int i=;i<=mod;i++)rank[i]=;
}
inline int find(int x)
{return fa[x]==x?x:fa[x]=find(fa[x]);}
inline void merge(int x,int y)
{
if(rank[x]<rank[y]){
fa[x]=y;}
else{
fa[y]=x;
if(rank[x]==rank[y])rank[x]++;}
}
inline int work()
{
for(int i=;i<=n;i++){
int x=read();int y=read();int e=read();
x%=mod;y%=mod;
if(e)merge(find(x),find(y));
else{a[++cnt].x=x;a[cnt].y=y;}
}
bool flag=true;
for(int i=;i<=cnt;i++)
if(find(a[i].x)==find(a[i].y))
{flag=false;break;}
if(flag)puts("YES");
else puts("NO");
}
int main()
{
T=read();
while(T--){
n=read();
ready();work();}
return ;
}

洛谷P1955 [NOI2015] 程序自动分析 [并查集,离散化]的更多相关文章

  1. 洛谷p1955[NOI2015]程序自动分析

    题目: 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量 ...

  2. 洛谷 P1955 [NOI2015]程序自动分析 题解

    每日一题 day22 打卡 Analysis 离散化+并查集 先离散化所有的约束条件,再处理所有e=1的条件,将i的祖先和j的祖先合并到一个集合中:e=0时,如果i的祖先与j的祖先在同一个集合中,说明 ...

  3. 【做题笔记】洛谷P1955[NOI2015]程序自动分析

    第一道蓝题祭- 注意到本题中判断的是下标,即,并不是真的判断 \(i\) 是否等于 \(j\) 显然考虑并查集,把所有标记为"相等"的数放在一个集合里,然后最后扫一遍每个数,如果有 ...

  4. BZOJ 4195: [Noi2015]程序自动分析 并查集+离散化

    LUOGU 1955BZOJ 4195 题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量 ...

  5. BZOJ 4195: [Noi2015]程序自动分析 并查集 + 离散化 + 水题

    TM 读错题了...... 我还以为是要动态询问呢,结果是统一处理完了再询问...... 幼儿园题,不解释. Code: #include<bits/stdc++.h> #define m ...

  6. BZOJ 4195: [Noi2015]程序自动分析 [并查集 离散化 | 种类并查集WA]

    题意: 给出若干相等和不等关系,判断是否可行 woc NOI考这么傻逼的题飞快打了一个种类并查集交上了然后爆零... 发现相等和不等看错了异或一下再叫woc90分 然后发现md$a \neq b, a ...

  7. 【BZOJ4195】[Noi2015]程序自动分析 并查集

    [BZOJ4195][Noi2015]程序自动分析 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3 ...

  8. [Bzoj4195] [NOI2015] 程序自动分析 [并查集,哈希,map] 题解

    用并查集+离散化,注意:并查集数组大小不是n而是n*2 #include <iostream> #include <algorithm> #include <cstdio ...

  9. BZOJ-4195 NOI2015Day1T1 程序自动分析 并查集+离散化

    总的来说,这道题水的有点莫名奇妙,不过还好一次轻松A 4195: [Noi2015]程序自动分析 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 836 ...

随机推荐

  1. RabbitMQ的使用总结

    RabbitMQ介绍 说明: Consumer (消费者):使用队列 Queue 从 Exchange 中获取消息的应用. Exchange (交换机):负责接收生产者的消息并把它转到到合适的队列. ...

  2. [洛谷P1338] 末日的传说

    洛谷题目链接:末日的传说 题目描述 只要是参加jsoi活动的同学一定都听说过Hanoi塔的传说:三根柱子上的金片每天被移动一次,当所有的金片都被移完之后,世界末日也就随之降临了. 在古老东方的幻想乡, ...

  3. Flask中路由原理

    在Flask内部使用两张表维护路由: url_map :维护URL规则和endpoint的映射 view_functions :维护endpoint和视图函数的映射. 以用户访问URL/home为例, ...

  4. Markdown 代码块中再内嵌一个行内代码

    在 jQuery 1.9 之前(不含1.9):如果传入一个空字符串. null 或 jQuery.parseJSON( jsonString ) ,该函数将返回,而不是抛出一个错误,即使它不是有效的  ...

  5. 知问前端——Ajax登录

    本文,将使用Ajax登录. 一.服务器端代码 is_user.php: <?php require 'config.php'; $query = mysql_query("SELECT ...

  6. 【转载】Quick 中的触摸事件

    原文地址 http://cn.cocos2d-x.org/article/index?type=quick_doc&url=/doc/cocos-docs-master/manual/fram ...

  7. Frogs' Neighborhood(POJ1659+Havel-Hakimi定理)

    题目链接:http://poj.org/problem?id=1659 题目: 题意:根据他给你的每个点的度数构造一张无向图. 思路:自己WA了几发(好菜啊……)后看到discuss才知道这个要用Ha ...

  8. window对象的方法和属性汇总

    window对象有以下方法: open close alert confirm prompt setTimeout clearTimeout setInterval clearInterval mov ...

  9. 对vue中 默认的 config/index.js:配置的详细理解 -【以及webpack配置的理解】-config配置的目的都是为了服务webpack的配置,给不同的编译条件提供配置

    当我们需要和后台分离部署的时候,必须配置config/index.js: 用vue-cli 自动构建的目录里面  (环境变量及其基本变量的配置) var path = require('path') ...

  10. Perl6 Bailador框架(2):路径设置

    use v6; use Bailador; =begin pod get表示是get发送 post表示是post发送 get/post 后面的 '/name' 表示是路径 => sub {} 是 ...