AcWing题目

洛谷题目

解题思路

首先可以得到一个很容易得到的贪心策略,将一条路径上最贵的(边权最大)的\(K\)条边删去,那么我们剩下的路径中最贵(边权最大)的路就是原本这条路径上帝\(K + 1\)大的路。

于是原问题就可以转化为:

求一张无向图中最大的一条路径中的第\(K+1\)大的边

这就启发我们枚举所有的路径。

可行吗?

显然是不可行的,这个路很多,但是我们可以反向思考

我们可以假定一个距离\(x\),然后看看这张图上是否存在一条路径,使它上面第\(K + 1\)大的边长度为\(x\),进一步的,我们可以转化成为在这张图中,是否存在\(K\)条边,任意一条边的权重\(W_{i}>x\)

这样我们的\(check\)函数似乎就呼之欲出了

check函数

这里的\(check\)我们判断一张图中是否有\(K\)条权重大于\(x\)的边,可以进行一下转换:

对于边权\(W_{i} > x\) 的边,设置权重\(w_{i} = 1\)(这是小w,不是原题给定权重)

反之设置权重\(w_{i} = 0\)

然后跑下这张图的最短路(\(从1到N\)),判断是否\(\le k\)即可

Dijkstra写法 \(O(mlog^{2}n)\)

这没什么好说的,就是建图跑最短路,因为边权非负(只能是\(0或1\))

#include <iostream>
#include <cstring>
#include <queue> using namespace std;
typedef pair<int, int> PII; const int N = 20020;
int h[N], e[N], w[N], ne[N], idx;
int dist[N], st[N], n, m, k; void add(int a, int b, int c)
{
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++ ;
} bool check(int x)
{
memset(dist, 0x3f, sizeof dist);
memset(st, 0, sizeof st); priority_queue<PII, vector<PII>, greater<> > heap;
dist[1] = 0, heap.push({dist[1], 1}); while (heap.size())
{
auto t = heap.top().second; heap.pop(); if (st[t]) continue ;
st[t] = true ; for (int i = h[t]; ~i; i = ne[i])
{
int j = e[i], W = (w[i] > x);
if (dist[j] > dist[t] + W)
{
dist[j] = dist[t] + W;
heap.push({dist[j], j});
}
}
} return dist[n] <= k;
} int main()
{
scanf("%d%d%d", &n, &m, &k); memset(h, -1, sizeof h);
while (m -- )
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
add(u, v, w), add(v, u, w);
} int l = 0, r = 1e6 + 1;
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid;
else l = mid + 1;
}
if (r == 1e6 + 1) r = -1;
printf("%d\n", r); return 0;
}

双端队列广搜 \(O(mlogn)\)

因为边权只有\(0-1\),可以用双端队列广搜,时间是线性的,再乘上二分次数,是\(O(mlogn)\)

#include <iostream>
#include <cstring>
#include <queue> using namespace std;
typedef pair<int, int> PII; const int N = 20020;
int h[N], e[N], w[N], ne[N], idx;
int dist[N], st[N], n, m, k; void add(int a, int b, int c)
{
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++ ;
} bool check(int x)
{
memset(dist, 0x3f, sizeof dist);
memset(st, 0, sizeof st); deque<int> dq;
dist[1] = 0, dq.push_back(1); while (dq.size())
{
int t = dq.front(); dq.pop_front(); if (st[t]) continue ;
st[t] = true ; for (int i = h[t]; ~i; i = ne[i])
{
int j = e[i], W = (w[i] > x);
if (dist[j] > dist[t] + W)
{
dist[j] = dist[t] + W;
if (W) dq.push_back(j);
else dq.push_front(j);
}
}
} return dist[n] <= k;
} int main()
{
scanf("%d%d%d", &n, &m, &k); memset(h, -1, sizeof h);
while (m -- )
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
add(u, v, w), add(v, u, w);
} int l = 0, r = 1e6 + 1;
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid;
else l = mid + 1;
}
if (r == 1e6 + 1) r = -1;
printf("%d\n", r); return 0;
}

SPFA \(O(mlogn\sim 被卡飞)\)

和Dijkstra一样,跑个最短路

#include <iostream>
#include <cstring>
#include <queue> using namespace std;
typedef pair<int, int> PII; const int N = 20020;
int h[N], e[N], w[N], ne[N], idx;
int dist[N], st[N], n, m, k; void add(int a, int b, int c)
{
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++ ;
} bool check(int x)
{
memset(dist, 0x3f, sizeof dist);
memset(st, 0, sizeof st); queue<int> q;
dist[1] = 0, q.push(1), st[1] = true; while (q.size())
{
int t = q.front(); q.pop();
st[t] = false ; for (int i = h[t]; ~i; i = ne[i])
{
int j = e[i], W = (w[i] > x);
if (dist[j] > dist[t] + W)
{
dist[j] = dist[t] + W;
if (!st[j]) q.push(j), st[j] = true ;
}
}
} return dist[n] <= k;
} int main()
{
scanf("%d%d%d", &n, &m, &k); memset(h, -1, sizeof h);
while (m -- )
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
add(u, v, w), add(v, u, w);
} int l = 0, r = 1e6 + 1;
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid;
else l = mid + 1;
}
if (r == 1e6 + 1) r = -1;
printf("%d\n", r); return 0;
}

关于时间

\(AcWing:Dijkstra\ 150ms,双端队列BFS\ \ 56ms,SPFA\ 63ms\)

\(Luogu:Dijkstra\ 238ms, 双端队列BFS\ 73ms, SPFA\ 89ms\)

Accepted!

AcWing340通信道路/ USACO2008 Telephone Line S的更多相关文章

  1. BZOJ1610: [Usaco2008 Feb]Line连线游戏

    1610: [Usaco2008 Feb]Line连线游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1301  Solved: 571[Submit ...

  2. BZOJ 1610: [Usaco2008 Feb]Line连线游戏

    1610: [Usaco2008 Feb]Line连线游戏 Description Farmer John最近发明了一个游戏,来考验自命不凡的贝茜.游戏开始的时 候,FJ会给贝茜一块画着N (2 &l ...

  3. 1610: [Usaco2008 Feb]Line连线游戏

    1610: [Usaco2008 Feb]Line连线游戏 Time Limit: 5 Sec  Memory Limit: 64 MB Submit: 1396  Solved: 615 [Subm ...

  4. [bzoj1610][Usaco2008 Feb]Line连线游戏_暴力枚举

    Line连线游戏 bzoj-1610 Usaco-2008 Feb 题目大意:Farmer John最近发明了一个游戏,来考验自命不凡的贝茜.游戏开始的时 候,FJ会给贝茜一块画着N (2 <= ...

  5. [Usaco2008 Feb]Line连线游戏[暴力][水题]

    Description Farmer John最近发明了一个游戏,来考验自命不凡的贝茜.游戏开始的时 候,FJ会给贝茜一块画着N (2 <= N <= 200)个不重合的点的木板,其中第i ...

  6. 【BZOJ】1610: [Usaco2008 Feb]Line连线游戏(几何)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1610 两种做法,一种计算几何,一种解析几何,但是计算几何的复杂度远远搞出解析集合(虽然精度最高) 计 ...

  7. 【计算几何】【斜率】bzoj1610 [Usaco2008 Feb]Line连线游戏

    枚举直线,计算斜率,排序,统计答案. #include<cstdio> #include<cmath> #include<algorithm> using name ...

  8. [BZOJ1610] [Usaco2008 Feb] Line连线游戏 (set)

    Description Farmer John最近发明了一个游戏,来考验自命不凡的贝茜.游戏开始的时 候,FJ会给贝茜一块画着N (2 <= N <= 200)个不重合的点的木板,其中第i ...

  9. 【BZOJ】1610: [Usaco2008 Feb]Line连线游戏

    [算法]计算几何 [题解]计算所有斜率排序去重. 实数判断相等用fabs(...)≤eps. ★斜率题一定要注意斜率不存在的情况!!! 其实我觉得这份代码可以hack的…… #include<c ...

  10. bzoj1610 [Usaco2008 Feb]Line连线游戏 几何+暴力

    Description Farmer John最近发明了一个游戏,来考验自命不凡的贝茜.游戏开始的时 候,FJ会给贝茜一块画着N (2 <= N <= 200)个不重合的点的木板,其中第i ...

随机推荐

  1. nsis制作新版迅雷安装界面

    终于搞出来一点名堂,不借用皮肤插件,圆角,无标题栏拖动,渐隐渐显,纯nsis代码编写,相似度大概也有95%以上了. 演示程序下载

  2. 51单片机下实现软件模拟IIC通信

    1.IIC协议简易概述 IIC全称Inter-Integrated Circuit (集成电路总线),是由PHILIPS公司在80年代开发的两线式串行总线,用于连接微控制器及其外围设备.IIC属于半双 ...

  3. 谣言检测()——《Debunking Rumors on Twitter with Tree Transformer》

    论文信息 论文标题:Debunking Rumors on Twitter with Tree Transformer论文作者:Jing Ma.Wei Gao论文来源:2020,COLING论文地址: ...

  4. SpringSecurity 在 SSM架构中的使用

    SpringSecurity - SSM SpringSecurity 对比 Shiro SpringSecurity的特点: 能和 Spring无缝贴合 能实现全面的权限控制 专门为 Web开发而设 ...

  5. Linux 下指定端口开放访问权限

    Linux 下指定端口开放访问权限 作者:Grey 原文地址: 博客园:Linux 下指定端口开放访问权限 CSDN:Linux 下指定端口开放访问权限 环境 CentOS 系和 Debian 系的防 ...

  6. 23.mixin类源码解析

    mixin类用于提供视图的基本操作行为,注意mixin类提供动作方法,而不是直接定义处理程序方法 例如.get() .post(),这允许更灵活的定义,mixin从rest_framework.mix ...

  7. .net core 读取appsettings.json 文件中文乱码的问题

    解决办法:设置高级保存选项 第一步:在工具栏找到自定义选项 第二步:添加高级保存选项Advanced save options 第三步:在Appsettings.json页面操作

  8. CH58X服务修改

    在对ble系列应用时,很多时候拿手机充当主机.在使用ble 调试助手时常会用到write.read.notify等功能.有时可能会根据自己的需求对这些服务进行修改.下图是官方例程体现出的service ...

  9. SpringBoot问题集合

    Whitelabel Error Page This application has no explicit mapping for /error, so you are seeing this as ...

  10. pycharm系列---django

    manage debug Python Console基本配置 DJANGO_SETTINGS_MODULE=mini_project.settings import sys import djang ...