Spark RDD概念学习系列之RDD的转换(十)
RDD的转换
Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG。接下来以“Word Count”为例,详细描述这个DAG生成的实现过程。
Spark Scala版本的Word Count程序如下:
1: val file = spark.textFile("hdfs://...")
2: val counts = file.flatMap(line => line.split(" "))
3: .map(word => (word, 1))
4: .reduceByKey(_ + _)
5: counts.saveAsTextFile("hdfs://...")
file和counts都是RDD,其中file是从HDFS上读取文件并创建了RDD,而counts是在file的基础上通过flatMap、map和reduceByKey这三个RDD转换生成的。最后,counts调用了动作saveAsTextFile,用户的计算逻辑就从这里开始提交的集群进行计算。那么上面这5行代码的具体实现是什么呢?
1)行1:spark是org.apache.spark.SparkContext的实例,它是用户程序和Spark的交互接口。spark会负责连接到集群管理者,并根据用户设置或者系统默认设置来申请计算资源,完成RDD的创建等。
spark.textFile("hdfs://...")就完成了一个org.apache.spark.rdd.HadoopRDD的创建,并且完成了一次RDD的转换:通过map转换到一个org.apache.spark.rdd.MapPartitions-RDD。
也就是说,file实际上是一个MapPartitionsRDD,它保存了文件的所有行的数据内容。
2)行2:将file中的所有行的内容,以空格分隔为单词的列表,然后将这个按照行构成的单词列表合并为一个列表。最后,以每个单词为元素的列表被保存到MapPartitionsRDD。
3)行3:将第2步生成的MapPartitionsRDD再次经过map将每个单词word转为(word, 1)的元组。这些元组最终被放到一个MapPartitionsRDD中。
4)行4:首先会生成一个MapPartitionsRDD,起到map端combiner的作用;然后会生成一个ShuffledRDD,它从上一个RDD的输出读取数据,作为reducer的开始;最后,还会生成一个MapPartitionsRDD,起到reducer端reduce的作用。
5)行5:首先会生成一个MapPartitionsRDD,这个RDD会通过调用org.apache.spark.rdd.PairRDDFunctions#saveAsHadoopDataset向HDFS输出RDD的数据内容。最后,调用org.apache.spark.SparkContext#runJob向集群提交这个计算任务。
RDD之间的关系可以从两个维度来理解:一个是RDD是从哪些RDD转换而来,也就是RDD的parent RDD(s)是什么;还有就是依赖于parent RDD(s)的哪些Partition(s)。这个关系,就是RDD之间的依赖,org.apache.spark.Dependency。根据依赖于parent RDD(s)的Partitions的不同情况,Spark将这种依赖分为两种,一种是宽依赖,一种是窄依赖。
RDD的依赖关系(宽依赖和窄依赖)
如,假设,现在如下







所以,

比如,我这里是刚好是4台worker1、worker2、worker3、worker4。还有1台Master。




soga,
val file = spark.textFile("hdfs://...")
1)行1:spark是org.apache.spark.SparkContext的实例,它是用户程序和Spark的交互接口。spark会负责连接到集群管理者,并根据用户设置或者系统默认设置来申请计算资源,完成RDD的创建等。
spark.textFile("hdfs://...")就完成了一个org.apache.spark.rdd.HadoopRDD的创建,并且完成了一次RDD的转换:通过map转换到一个org.apache.spark.rdd.MapPartitions-RDD。
也就是说,file实际上是一个MapPartitionsRDD,它保存了文件的所有行的数据内容。


想要成为高手,一定要多看源码,看上几十遍都太少了,包括看上10个版本的源码。无论是hadoop、还是spark。


val counts = file.flatMap(line => line.split(" ")) 2)行2:将file中的所有行的内容,以空格分隔为单词的列表,然后将这个按照行构成的单词列表合并为一个列表。最后,以每个单词为元素的列表被保存到MapPartitionsRDD。

.map(word => (word, 1)) 3)行3:将第2步生成的MapPartitionsRDD再次经过map将每个单词word转为(word, 1)的元组。这些元组最终被放到一个MapPartitionsRDD中。



至此,windows本地,已经完成了。
下面是在网络里了。
注意啦! 分区是计算概念,分片是数据概念。




有4台worker,每台都在自己内存计算。

.reduceByKey(_ + _)
4)行4:首先会生成一个MapPartitionsRDD,起到map端combiner的作用;然后会生成一个ShuffledRDD,它从上一个RDD的输出读取数据,作为reducer的开始;最后,还会生成一个MapPartitionsRDD,起到reducer端reduce的作用。
总结:

第一个stage :
HadoopRDD -> MapPartitionRDD -> MapPartitionsRDD -> MapPartitionsRDD -> MapPartitionsRDD

第二个stage :
Stage shuffledRDD -> MapPartitionsRDD
Spark RDD概念学习系列之RDD的转换(十)的更多相关文章
- Spark RDD概念学习系列之RDD的checkpoint(九)
RDD的检查点 首先,要清楚.为什么spark要引入检查点机制?引入RDD的检查点? 答:如果缓存丢失了,则需要重新计算.如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容 ...
- Spark RDD概念学习系列之RDD的缓存(八)
RDD的缓存 RDD的缓存和RDD的checkpoint的区别 缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存.本地文件系统和Tachyon) ...
- Spark RDD概念学习系列之RDD的操作(七)
RDD的操作 RDD支持两种操作:转换和动作. 1)转换,即从现有的数据集创建一个新的数据集. 2)动作,即在数据集上进行计算后,返回一个值给Driver程序. 例如,map就是一种转换,它将数据集每 ...
- Spark RDD概念学习系列之RDD是什么?(四)
RDD是什么? 通俗地理解,RDD可以被抽象地理解为一个大的数组(Array),但是这个数组是分布在集群上的.详细见 Spark的数据存储 Spark的核心数据模型是RDD,但RDD是个抽象类 ...
- Spark RDD概念学习系列之RDD的依赖关系(宽依赖和窄依赖)(三)
RDD的依赖关系? RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 1)窄依赖指的是每 ...
- Spark RDD概念学习系列之RDD的缺点(二)
RDD的缺点? RDD是Spark最基本也是最根本的数据抽象,它具备像MapReduce等数据流模型的容错性,并且允许开发人员在大型集群上执行基于内存的计算. 为了有效地实现容错,(详细见ht ...
- Spark RDD概念学习系列之rdd的依赖关系彻底解密(十九)
本期内容: 1.RDD依赖关系的本质内幕 2.依赖关系下的数据流视图 3.经典的RDD依赖关系解析 4.RDD依赖关系源码内幕 1.RDD依赖关系的本质内幕 由于RDD是粗粒度的操作数据集,每个Tra ...
- Spark RDD概念学习系列之RDD的创建(六)
RDD的创建 两种方式来创建RDD: 1)由一个已经存在的Scala集合创建 2)由外部存储系统的数据集创建,包括本地文件系统,还有所有Hadoop支持的数据集,比如HDFS.Cassandra.H ...
- Spark RDD概念学习系列之RDD的5大特点(五)
RDD的5大特点 1)有一个分片列表,就是能被切分,和Hadoop一样,能够切分的数据才能并行计算. 一组分片(partition),即数据集的基本组成单位,对于RDD来说,每个分片都会被一个计 ...
随机推荐
- leetcode:Sort List(一个链表的归并排序)
Sort a linked list in O(n log n) time using constant space complexity. 分析:题目要求时间复杂度为O(nlogn),所以不能用qu ...
- java中String类学习
java中String类的相关操作如下: (1)初始化:例如,String s = “abc”; (2)length:返回字符串的长度. (3)charAT:字符操作,按照索引值获得字符串中的指定字符 ...
- android利用数字证书对程序签名
签名的必要性 1. 防止你已安装的应用被恶意的第三方覆盖或替换掉. 2. 开发者的身份标识,签名可以防止抵赖等事件的发生. 开发Android的人这么多,完全有可能大家都把类名,包名起成了一个同 ...
- HDU 3951 (博弈) Coin Game
先考虑两种简单的情况: 如果先手能一次把硬币拿完,即 k >= n ,那么先手胜 如果每次只能拿一个硬币, 即 k = 1 ,那么如果有奇数个硬币先手胜,如果有偶数个硬币后手胜. 剩下的情况就是 ...
- jquery响应回车事件
简单地记下jquery实现回车事件,代码如下: 全局: $(function(){document.onkeydown = function(e){ var ev = document.all ...
- (六)6.11 Neurons Networks implements of self-taught learning
在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught ...
- win7下的IP-主机名映射
今天学了个技巧,win7下有个目录:C:\Windows\System32\drivers\etc 该目录下有个文件: hosts 在这个文件里面我们可以映射IP-主机名: 127.0.0.1 loc ...
- 理解javascript的caller,callee,call,apply概念
在提到上述的概念之前,首先想说说javascript中函数的隐含参数:arguments Arguments 该对象代表正在执行的函数和调用它的函数的参数. [function.]arguments[ ...
- hibernate建表 一对多 多的一方控制一的一方
一对多 单向<one-to-many>通过calss操作student 外键在student表中,所以外键由student维护<many-to-one>通过student操作c ...
- Linux上修改weblogic的内存大小
我们经常在使用WebLoigc部署应用程序后,发现程序运行速度并不是很快,遇到这种情况我们可以尝试调整启动时分配的内存,设置方法有两种: 一.在../domain/setDomainEnv.sh文件中 ...