[HNOI2007]分裂游戏 博弈论
题面
题解
这题的思路比较特别,观察到我们的每次操作实质上是对于一颗豆子的操作,而不是对一瓶豆子的操作,因此我们要把每颗豆子当做一个独立的游戏,而它所在的瓶子代表了它的SG值。
瓶子数量很少,因此我们只需要枚举每个豆子的后继状态暴力转移即可
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 30
int T, n, ans, rnt;
int s[AC], sg[AC];
bool z[AC];
inline int read()
{
int x = 0;char c = getchar();
while(c > '9' || c < '0') c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x;
}
int dfs(int x)
{
if(z[x]) return sg[x];
z[x] = true;
bool vis[500];
memset(vis, 0, sizeof(vis));
for(R i = x - 1; i; i --)
for(R j = i; j; j --) vis[dfs(i) ^ dfs(j)] = true;
for(R i = 0; i <= 499; i ++) if(!vis[i]) {sg[x] = i; break ;}
return sg[x];
}
#define h(x) (n - x + 1)//查询真正的下标
void work()
{
T = read(), sg[1] = 0, z[1] = 1;
while(T --)
{
n = read(), ans = rnt = 0;
for(R i = 1; i <= n; i ++)
s[i] = read(), ans ^= (s[i] & 1) * dfs(n - i + 1);
if(!ans) printf("-1 -1 -1\n");
else for(R i = 1; i <= n; i ++)
for(R j = i + 1; j <= n; j ++)
for(R k = j; k <= n; k ++)
if((ans ^ sg[h(i)] ^ sg[h(j)] ^ sg[h(k)]) == 0)
{
if(!rnt) printf("%d %d %d\n", i - 1, j - 1, k - 1);
++ rnt;
}
printf("%d\n", rnt);
}
}
int main()
{
// freopen("in.in", "r", stdin);
work();
// fclose(stdin);
return 0;
}
[HNOI2007]分裂游戏 博弈论的更多相关文章
- bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 973 Solved: 599[Submit][Status ...
- BZOJ1188:[HNOI2007]分裂游戏(博弈论)
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏.该游戏的规则试:共有n个瓶子,标号为0,1,2.....n-1,第i个瓶子中装有p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择3个 ...
- bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 733 Solved: 451[Submit][Status ...
- bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理
[HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1394 Solved: 847[Submit][Status][Dis ...
- [bzoj1188][HNOI2007]分裂游戏_博弈论
分裂游戏 bzoj-1188 HNOI-2007 题目大意:题目链接. 注释:略. 想法: 我们发现如果一个瓶子内的小球个数是奇数才是有效的. 所以我们就可以将问题变成了一个瓶子里最多只有一个球球. ...
- 【BZOJ 1188】 [HNOI2007]分裂游戏
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子 ...
- [BZOJ1188][HNOI2007]分裂游戏(博弈论)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1188 分析: 设SG[i]表示一个石子在位置i上的SG值 这个很容易暴力求,因为i的后 ...
- [BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】
题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后 ...
- luoguP3185 [HNOI2007]分裂游戏 枚举 + 博弈论
每个位置的瓶子中的每个石子是一个独立的游戏 只要计算出他们的\(sg\)值即可 至于方案数,反正不多\(n^3\)暴力枚举即可 反正怎么暴力都能过啊 复杂度\(O(Tn^3)\) #include & ...
随机推荐
- C#目录:藏锋
------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 此为C#专题的分类,只会记录我对于C#一些需求的解决方案,并非全部学习资料(全部可以参考微软提供的API) 主 ...
- Yii2.0 高级模版编写使用自定义组件(component)
翻译自:http://www.yiiframework.com/wiki/760/yii-2-0-write-use-a-custom-component-in-yii2-0-advanced-tem ...
- idea 从javadoc中复制内容出来
打开 tool window就行了 经验:百度google不到的东西太多了,要学会自己想办法,至少也要把功能都试一遍吧, 而且像这种东西官方一般会给方法实现你的目的,只不过有时候是把功能迁移了或者整合 ...
- 工作中遇到的令人头疼的bug
工作中我们会遇到形形色色的bug,但是很多bug都可以调试很明显的看出来,这种bug解决起来我们不会那么头疼但是有些却让人头疼而捉急,特别是本地运行一切正常,上传服务器就会出现bug.现在我总结几个我 ...
- Selenium2+python自动化-iframe
前言 本篇详细讲解iframe的相关切换操作. 一.frame和iframe区别 Frame与Iframe两者可以实现的功能基本相同,不过Iframe比Frame具有更多的灵活性. frame是整个页 ...
- linux命令提示符设置
变成绿色 [root@localhost /usr/local]#vim /root/.bashrc # .bashrc # User specific aliases and functions a ...
- 人脸检测及识别python实现系列(6)——终篇:从实时视频流识别出“我”
人脸检测及识别python实现系列(6)——终篇:从实时视频流识别出“我” 终于到了最后一步,激动时刻就要来临了,先平复一下心情,把剩下的代码加上,首先是为Model类增加一个预测函数: #识别人脸 ...
- leetcode26_C++删除排序数组中的重复项
给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成. 示例 1 ...
- Halcon如何保存仿射变换矩阵
这里我们通过序列化来实现的,如下图,写到硬盘的HomMat2D_1内容和从硬盘里HomMat2D_2读出的内容一致,源代码在图片下方. Halcon源代码: hom_mat2d_identity (H ...
- Python爬虫入门(1-2):综述、爬虫基础了解
大家好哈,最近博主在学习Python,学习期间也遇到一些问题,获得了一些经验,在此将自己的学习系统地整理下来,如果大家有兴趣学习爬虫的话,可以将这些文章作为参考,也欢迎大家一共分享学习经验. Pyth ...