Spark中有两个类似的api,分别是reduceByKey和groupByKey。这两个的功能类似,但底层实现却有些不同,那么为什么要这样设计呢?我们来从源码的角度分析一下。

先看两者的调用顺序(都是使用默认的Partitioner,即defaultPartitioner)

所用spark版本:spark2.1.0

先看reduceByKey

Step1

  def reduceByKey(func: (V, V) => V): RDD[(K, V)] = self.withScope {
reduceByKey(defaultPartitioner(self), func)
}

Setp2

  def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = self.withScope {
combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner)
}

Setp3

def combineByKeyWithClassTag[C](
createCombiner: V => C,
mergeValue: (C, V) => C,
mergeCombiners: (C, C) => C,
partitioner: Partitioner,
mapSideCombine: Boolean = true,
serializer: Serializer = null)(implicit ct: ClassTag[C]): RDD[(K, C)] = self.withScope {
require(mergeCombiners != null, "mergeCombiners must be defined") // required as of Spark 0.9.0
if (keyClass.isArray) {
if (mapSideCombine) {
throw new SparkException("Cannot use map-side combining with array keys.")
}
if (partitioner.isInstanceOf[HashPartitioner]) {
throw new SparkException("HashPartitioner cannot partition array keys.")
}
}
val aggregator = new Aggregator[K, V, C](
self.context.clean(createCombiner),
self.context.clean(mergeValue),
self.context.clean(mergeCombiners))
if (self.partitioner == Some(partitioner)) {
self.mapPartitions(iter => {
val context = TaskContext.get()
new InterruptibleIterator(context, aggregator.combineValuesByKey(iter, context))
}, preservesPartitioning = true)
} else {
new ShuffledRDD[K, V, C](self, partitioner)
.setSerializer(serializer)
.setAggregator(aggregator)
.setMapSideCombine(mapSideCombine)
}
}

姑且不去看方法里面的细节,我们会只要知道最后调用的是combineByKeyWithClassTag这个方法。这个方法有两个参数我们来重点看一下,

def combineByKeyWithClassTag[C](
createCombiner: V => C,
mergeValue: (C, V) => C,
mergeCombiners: (C, C) => C,
partitioner: Partitioner,
mapSideCombine: Boolean = true,
serializer: Serializer = null)

首先是partitioner参数,这个即是RDD的分区设置。除了默认的defaultPartitioner,Spark还提供了RangePartitioner和HashPartitioner外,此外用户也可以自定义partitioner。通过源码可以发现如果是HashPartitioner的话,那么是会抛出一个错误的。

然后是mapSideCombine参数,这个参数正是reduceByKey和groupByKey最大不同的地方,它决定是是否会先在节点上进行一次Combine操作,下面会有更具体的例子来介绍。

然后是groupByKey

Step1

  def groupByKey(): RDD[(K, Iterable[V])] = self.withScope {
groupByKey(defaultPartitioner(self))
}

Step2

  def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])] = self.withScope {
// groupByKey shouldn't use map side combine because map side combine does not
// reduce the amount of data shuffled and requires all map side data be inserted
// into a hash table, leading to more objects in the old gen.
val createCombiner = (v: V) => CompactBuffer(v)
val mergeValue = (buf: CompactBuffer[V], v: V) => buf += v
val mergeCombiners = (c1: CompactBuffer[V], c2: CompactBuffer[V]) => c1 ++= c2
val bufs = combineByKeyWithClassTag[CompactBuffer[V]](
createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false)
bufs.asInstanceOf[RDD[(K, Iterable[V])]]
}

Setp3

def combineByKeyWithClassTag[C](
createCombiner: V => C,
mergeValue: (C, V) => C,
mergeCombiners: (C, C) => C,
partitioner: Partitioner,
mapSideCombine: Boolean = true,
serializer: Serializer = null)(implicit ct: ClassTag[C]): RDD[(K, C)] = self.withScope {
require(mergeCombiners != null, "mergeCombiners must be defined") // required as of Spark 0.9.0
if (keyClass.isArray) {
if (mapSideCombine) {
throw new SparkException("Cannot use map-side combining with array keys.")
}
if (partitioner.isInstanceOf[HashPartitioner]) {
throw new SparkException("HashPartitioner cannot partition array keys.")
}
}
val aggregator = new Aggregator[K, V, C](
self.context.clean(createCombiner),
self.context.clean(mergeValue),
self.context.clean(mergeCombiners))
if (self.partitioner == Some(partitioner)) {
self.mapPartitions(iter => {
val context = TaskContext.get()
new InterruptibleIterator(context, aggregator.combineValuesByKey(iter, context))
}, preservesPartitioning = true)
} else {
new ShuffledRDD[K, V, C](self, partitioner)
.setSerializer(serializer)
.setAggregator(aggregator)
.setMapSideCombine(mapSideCombine)
}
}

结合上面reduceByKey的调用链,可以发现最终其实都是调用combineByKeyWithClassTag这个方法的,但调用的参数不同。

reduceByKey的调用

combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner)

groupByKey的调用

combineByKeyWithClassTag[CompactBuffer[V]](
createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false)

正是两者不同的调用方式导致了两个方法的差别,我们分别来看

  • reduceByKey的泛型参数直接是[V],而groupByKey的泛型参数是[CompactBuffer[V]]。这直接导致了reduceByKey和groupByKey的返回值不同,前者是RDD[(K, V)],而后者是RDD[(K, Iterable[V])]

  • 然后就是mapSideCombine=false了,这个mapSideCombine参数的默认是true的。这个值有什么用呢,上面也说了,这个参数的作用是控制要不要在map端进行初步合并(Combine)。可以看看下面具体的例子。


从功能上来说,可以发现ReduceByKey其实就是会在每个节点先进行一次合并的操作,而groupByKey没有。

这么来看ReduceByKey的性能会比groupByKey好很多,因为有些工作在节点已经处理了。那么groupByKey为什么存在,它的应用场景是什么呢?我也不清楚,如果观看这篇文章的读者知道的话不妨在评论里说出来吧。非常感谢!

spark RDD,reduceByKey vs groupByKey的更多相关文章

  1. spark RDD,DataFrame,DataSet 介绍

    弹性分布式数据集(Resilient Distributed Dataset,RDD) RDD是Spark一开始就提供的主要API,从根本上来说,一个RDD就是你的数据的一个不可变的分布式元素集合,在 ...

  2. Spark SQL,如何将 DataFrame 转为 json 格式

    今天主要介绍一下如何将 Spark dataframe 的数据转成 json 数据.用到的是 scala 提供的 json 处理的 api. 用过 Spark SQL 应该知道,Spark dataf ...

  3. 【Spark算子】:reduceByKey、groupByKey和combineByKey

    在spark中,reduceByKey.groupByKey和combineByKey这三种算子用的较多,结合使用过程中的体会简单总结: 我的代码实践:https://github.com/wwcom ...

  4. reduceByKey和groupByKey区别与用法

    在spark中,我们知道一切的操作都是基于RDD的.在使用中,RDD有一种非常特殊也是非常实用的format——pair RDD,即RDD的每一行是(key, value)的格式.这种格式很像Pyth ...

  5. Spark RDD/Core 编程 API入门系列 之rdd案例(map、filter、flatMap、groupByKey、reduceByKey、join、cogroupy等)(四)

    声明: 大数据中,最重要的算子操作是:join  !!! 典型的transformation和action val nums = sc.parallelize(1 to 10) //根据集合创建RDD ...

  6. Spark RDD/Core 编程 API入门系列之map、filter、textFile、cache、对Job输出结果进行升和降序、union、groupByKey、join、reduce、lookup(一)

    1.以本地模式实战map和filter 2.以集群模式实战textFile和cache 3.对Job输出结果进行升和降序 4.union 5.groupByKey 6.join 7.reduce 8. ...

  7. 【spark】常用转换操作:reduceByKey和groupByKey

    1.reduceByKey(func) 功能: 使用 func 函数合并具有相同键的值. 示例: val list = List("hadoop","spark" ...

  8. Spark 学习笔记之 distinct/groupByKey/reduceByKey

    distinct/groupByKey/reduceByKey: distinct: import org.apache.spark.SparkContext import org.apache.sp ...

  9. spark中的pair rdd,看这一篇就够了

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是spark专题的第四篇文章,我们一起来看下Pair RDD. 定义 在之前的文章当中,我们已经熟悉了RDD的相关概念,也了解了RDD基 ...

随机推荐

  1. foreach加循环体与不加循环体的区别

    案例A(不加{}): <?php function genTree5($items) { foreach ($items as $item) echo $item['id'];die; $ite ...

  2. sql server 索引阐述系列七 索引填充因子与碎片

    一.概述 索引填充因子作用:提供填充因子选项是为了优化索引数据存储和性能. 当创建或重新生成索引时,填充因子的值可确定每个叶级页上要填充数据的空间百分比,以便在每一页上保留一些剩余存储空间作为以后扩展 ...

  3. Quartz使用记录总结

    Quartz是一个任务调度框架,最近在项目中有用到,所以做个记录总结. 一.主要元素 Scheduler:调度器,控制任务的调度,将JobDetail和Trigger注册到Scheduler加以控制. ...

  4. vue-07-自定义指令

    1, 全局指令 在main.js中引入 // 注册一个全局自定义指令 `v-focus` Vue.directive('focus', { // 当被绑定的元素插入到 DOM 中时…… inserte ...

  5. web进修之—Hibernate HQL(7)

    概述 HQL是Hibernate封装成为面向对象的数据库查询语言,具有如下特点: 面向对象,包括继承.多态和关联之类的概念,SQL操作的数据库的表,HQL更像是操作对象 大小写敏感,只对对象和属性敏感 ...

  6. mysql连续聚合

    连续聚合是按时间顺序对有序数据进行聚合的操作. 在下面的救示例中将使用EmpOrders表,该表用于存放每位员工每月发生的订购数量. 运行如下 代码创建EmpOrders表并填充示例数据. CREAT ...

  7. SpringBoot之Swagger2的使用

    Swagger是一组围绕OpenAPI规范构建的开源工具,可帮助设计.构建.记录和使用REST API.简单说下,它的出现就是为了方便进行测试后台的restful形式的接口,实现动态的更新,当我们在后 ...

  8. Jenkins+Git+Gitlab+Ansible实现持续集成自动化部署动态网站(二)--技术流ken

    项目前言 在上一篇博客<Jenkins+Git+Gitlab+Ansible实现持续化集成一键部署静态网站(一)--技术流ken>中已经详细讲解了如何使用这四个工具来持续集成自动化部署一个 ...

  9. Apollo 7 — ConfigService 消息扫描设计实现

    目录 设计 代码实现 总结 1.设计 Apollo 为了减少依赖,将本来 MQ 的职责转移到了 Mysql 中.具体表现为 Mysql 中的 ReleaseMessage 表. 具体官方文档可见:发送 ...

  10. 【golang-GUI开发】struct tags系统(一)

    我们已经介绍了qt的signal和slot,现在该讲讲它的struct tags系统了.qt拥有多种的struct tags,我们会去一一了解它们. 什么是struct tags? struct ta ...