本项目参考:

https://www.bilibili.com/video/av31500120?t=4657

训练代码

 # coding: utf-8
# Learning from Mofan and Mike G
# Recreated by Paprikatree
# Convolution NN Train import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Convolution2D, Activation, MaxPool2D, Flatten, Dense
from keras.optimizers import Adam
from keras.models import load_model nb_class = 10
nb_epoch = 4
batchsize = 128 '''
1st,准备参数
X_train: (0,255) --> (0,1) CNN中似乎没有必要?cnn自动转了吗?
设置时间函数测试一下两者对比。
小技巧:X_train /= 255.0 就可不用转换成浮点了???
'''
# Preparing your data mnist. MAC /.keras/datasets linux home ./keras/datasets
(X_train, Y_train), (X_test, Y_test) = mnist.load_data() # setup data shape
# (-1, 28, 28, 1) -1表示有默认个数据集,28*28是像素,1是1个通道
X_train = X_train.reshape(-1, 28, 28, 1) # tensorflow-channel last,while theano-channel first
X_test = X_test.reshape(-1, 28, 28, 1) X_train = X_train/255.000
X_test = X_test/255.000 # One-hot 6 --> [0,0,0,0,0,1,0,0,0]
Y_train = np_utils.to_categorical(Y_train, nb_class)
Y_test = np_utils.to_categorical(Y_test, nb_class) '''
2nd,设置模型
''' # setup model
model = Sequential() # 1st convolution layer # 滤波器要在28x28的图上横着走32次
model.add(Convolution2D(
filters=32, # 此处把filters写成了filter,找了半天。囧
kernel_size=[5, 5], # 滤波器是5x5大小的,可以是list列表,也可以是tuple元祖
padding='same', # padding也是一个窗口模式
input_shape=(28, 28, 1) # 定义输入的数据,必须是元组
))
model.add(Activation('relu'))
model.add(MaxPool2D(
pool_size=(2, 2), # 按照规则抓取特征,此处为在pool_size的2*2窗口下,strides = 2*2 跳两格再抓取。如 1 2 3 4 5 6...27 28 抓取1 2 ,跳过 3 4 抓取 5 6。
strides=(2, 2), # 相当于把图片缩小了。
padding="same",
)) # 2nd Conv2D layer
model.add(Convolution2D(
filters=64,
kernel_size=(5, 5),
padding='same',
))
model.add(Activation('relu'))
model.add(MaxPool2D(
pool_size=(2, 2), # 按照规则抓取特征,此处为在pool_size的2*2窗口下,strides = 2*2 跳两格再抓取。如 1 2 3 4 5 6...27 28 抓取1 2 ,跳过 3 4 抓取 5 6。
strides=(2, 2), # 相当于把图片缩小了。
padding="same",
)) # 讨论,卷积层数和最终结果关系。 # 1st Fully connected Dense,Dense 全连接层是hello world里面的内容
model.add(Flatten()) # 把卷积层里面的全部转换层一维数组
model.add(Dense(1024)) # Dense is output
model.add(Activation('relu')) # 1st Fully connected Dense,Dense 全连接层是hello world里面的内容
# 把卷积层里面的全部转换层一维数组
model.add(Dense(256)) # Dense is output
model.add(Activation('tanh')) # 2nd Fully connected Dense
model.add(Dense(10))
model.add(Activation('softmax')) '''
3rd 定义参数
'''
# Define Optimizer and setup Param
adam = Adam(lr=0.0001) # Adam实例化 # compile model
model.compile(
optimizer=adam, # optimizer='Adam'也是可以的,且默认lr=0.001,此处已经实例化为adam
loss='categorical_crossentropy',
metrics=['accuracy'],
) # Run network
model.fit(x=X_train, # 更多参数可以查看fit函数,alt+鼠标左键单击fit
y=Y_train,
epochs=nb_epoch,
batch_size=batchsize, # p=parameter, batch_size; v=var, batch size
verbose=1, # 显示模式
validation_data=(X_test, Y_test)
)
model.save('model_name.h5')
# evaluation = model.evaluate(X_test, Y_test) 现在用model.fit(validation_data)
# print(evaluation) 效果一样

测试代码:

 # coding: utf-8
# Learning from Mofan and Mike G
# Recreated by Paprikatree
# Convolution NN Predict import numpy as np
from keras.models import load_model # ??
import matplotlib.pyplot as plt
import matplotlib.image as processimage # load trained model
model = load_model('model_name.h5') # 已经训练好了的模型,在根目录下,默认为model_name.h5 # 写一个来预测的类
class MainPredictImg(object): def __init__(self):
pass def pred(self, filename):
pred_img = processimage.imread(filename)
pred_img = np.array(pred_img)
pred_img = pred_img.reshape(-1, 28, 28, 1)
prediction = model.predict(pred_img)
final_prediction = [result.argmax() for result in prediction][0]
a = 0
for i in prediction[0]:
print(a)
print('Percent:{:.30%}'.format(i))
a = a+1
return final_prediction def main():
predict = MainPredictImg()
res = predict.pred('4.png')
print("your number is:-->", res) if __name__ == '__main__':
main()

keras02 - hello convolution neural network 搭建第一个卷积神经网络的更多相关文章

  1. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

    3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...

  2. Convolution Neural Network (CNN) 原理与实现

    本文结合Deep learning的一个应用,Convolution Neural Network 进行一些基本应用,参考Lecun的Document 0.1进行部分拓展,与结果展示(in pytho ...

  3. Deeplearning - Overview of Convolution Neural Network

    Finally pass all the Deeplearning.ai courses in March! I highly recommend it! If you already know th ...

  4. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...

  5. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...

  6. 深度学习:卷积神经网络(convolution neural network)

    (一)卷积神经网络 卷积神经网络最早是由Lecun在1998年提出的. 卷积神经网络通畅使用的三个基本概念为: 1.局部视觉域: 2.权值共享: 3.池化操作. 在卷积神经网络中,局部接受域表明输入图 ...

  7. Recurrent Neural Network系列1--RNN(循环神经网络)概述

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  8. 【面向代码】学习 Deep Learning(三)Convolution Neural Network(CNN)

    ========================================================================================== 最近一直在看Dee ...

  9. TensorFlow从入门到理解(三):你的第一个卷积神经网络(CNN)

    运行代码: from __future__ import print_function import tensorflow as tf from tensorflow.examples.tutoria ...

随机推荐

  1. 使用 Moq 测试.NET Core 应用 -- 其它

    第一篇文章, 关于Mock的概念介绍: https://www.cnblogs.com/cgzl/p/9294431.html 第二篇文章, 关于方法Mock的介绍: https://www.cnbl ...

  2. C++ Sqlite3的基本使用

    |SQLite3简介  SQLite3只是一个轻型的嵌入式数据库引擎,占用资源非常低,处理速度比Mysql还快,专门用于移动设备上进行适量的数据存取,它只是一个文件,不需要服务器进程. SQL语句是S ...

  3. SQL优化 MySQL版 -分析explain SQL执行计划与Type级别详解

    type索引类型.类型 作者 : Stanley 罗昊 [转载请注明出处和署名,谢谢!] 注:看此文章前,需要有一定的Mysql基础或观看上一篇文章,该文章传送门: https://www.cnblo ...

  4. GoLang structTag说明

    在处理json格式字符串的时候,经常会看到声明struct结构的时候,属性的右侧还有小米点括起来的内容.形如 type User struct { UserId int `json:"use ...

  5. 从PRISM开始学WPF(五)MVVM(一)ViewModel-更新至Prism7.1

    0x5 MVVM [7.1updated]截止到目前,我们看到7.1的更新主要在三个地方 PrismApplication ,并且不再使用Bootstrapper 更新了unity,现在使用prism ...

  6. EF Core 快速上手——创建应用的DbContext

    系列文章 EF Core 快速上手--EF Core 入门 EF Core 快速上手--EF Core的三种主要关系类型 本节导航 定义应用的DbContext 创建DbContext的一个实例 创建 ...

  7. [转]Python in Visual Studio Code

    本文转自:https://code.visualstudio.com/docs/languages/python Working with Python in Visual Studio Code, ...

  8. 如果你也打算学习 Spring Cloud

    说到 Spring Cloud,那肯定要少不了提一下微服务框架,所谓的微服务框架就是把负责的功能拆分成比较小.功能比较单一的服务独立处理,例如单点登录服务.支付服务.订单服务等,当然如果订单功能比较复 ...

  9. Java虚拟机判定对象存活算法

    1.引用计数算法 描述:给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1:当引用失效时,计数器值就减1:任何时刻计数器值为0的对象就是不可能再被使用的. 特点:实现简单,判定效率高. ...

  10. 策略模式 Strategy 政策Policy 行为型 设计模式(二十五)

    策略模式 Strategy   与策略相关的常见词汇有:营销策略.折扣策略.教学策略.记忆策略.学习策略.... “策略”意味着分情况讨论,而不是一概而论 面对不同年龄段的人,面对不同的商品,必然将会 ...