这篇博客,给大家,体会不一样的版本编程。

代码

package zhouls.bigdata.myMapReduce.wordcount1;

import java.io.IOException;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

//4个泛型中,前两个是指定mapper输入数据的类型,KEYIN是输入的key的类型,VALUEIN是输入的value的类型
//map 和 reduce 的数据输入输出都是以 key-value对的形式封装的
//默认情况下,框架传递给我们的mapper的输入数据中,key是要处理的文本中一行的起始偏移量,这一行的内容作为value
public class WCMapper extends Mapper<LongWritable, Text, Text, LongWritable>{

//mapreduce框架每读一行数据就调用一次该方法
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
//具体业务逻辑就写在这个方法体中,而且我们业务要处理的数据已经被框架传递进来,在方法的参数中 key-value
//key 是这一行数据的起始偏移量 value 是这一行的文本内容

//将这一行的内容转换成string类型
String line = value.toString();

//对这一行的文本按特定分隔符切分
String[] words = StringUtils.split(line, " ");

//遍历这个单词数组输出为kv形式 k:单词 v : 1
for(String word : words){

context.write(new Text(word), new LongWritable(1));

}

}

}

package zhouls.bigdata.myMapReduce.wordcount1;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WCReducer extends Reducer<Text, LongWritable, Text, LongWritable>{

//框架在map处理完成之后,将所有kv对缓存起来,进行分组,然后传递一个组<key,valus{}>,调用一次reduce方法
//<hello,{1,1,1,1,1,1.....}>
@Override
protected void reduce(Text key, Iterable<LongWritable> values,Context context)
throws IOException, InterruptedException {

long count = 0;
//遍历value的list,进行累加求和
for(LongWritable value:values){

count += value.get();
}

//输出这一个单词的统计结果

context.write(key, new LongWritable(count));

}

}

package zhouls.bigdata.myMapReduce.wordcount1;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import zhouls.bigdata.myMapReduce.Anagram.Anagram;

/**
* 用来描述一个特定的作业
* 比如,该作业使用哪个类作为逻辑处理中的map,哪个作为reduce
* 还可以指定该作业要处理的数据所在的路径
* 还可以指定改作业输出的结果放到哪个路径
* ....
*
*
*/
public class WCRunner implements Tool {
public int run(String[] arg0) throws Exception {
Configuration conf = new Configuration();
//2删除已经存在的输出目录
Path mypath = new Path(arg0[1]);//下标为1,即是输出路径
FileSystem hdfs = mypath.getFileSystem(conf);//获取文件系统
if (hdfs.isDirectory(mypath))
{//如果文件系统中存在这个输出路径,则删除掉
hdfs.delete(mypath, true);
}

Job wcjob = new Job(conf, "WC");//构建一个job对象,取名为testAnagram

//设置整个job所用的那些类在哪个jar包
wcjob.setJarByClass(WCRunner.class);

//本job使用的mapper和reducer的类
wcjob.setMapperClass(WCMapper.class);
wcjob.setReducerClass(WCReducer.class);

//指定reduce的输出数据kv类型
wcjob.setOutputKeyClass(Text.class);
wcjob.setOutputValueClass(LongWritable.class);

//指定mapper的输出数据kv类型
wcjob.setMapOutputKeyClass(Text.class);
wcjob.setMapOutputValueClass(LongWritable.class);

FileInputFormat.addInputPath(wcjob, new Path(arg0[0]));// 文件输入路径
FileOutputFormat.setOutputPath(wcjob, new Path(arg0[1]));// 文件输出路径
//将job提交给集群运行
wcjob.waitForCompletion(true);

return 0;

}

public static void main(String[] args) throws Exception
{//定义数组来保存输入路径和输出路径
//集群路径
// String[] args0 = { "hdfs://HadoopMaster:9000/wc.txt",
// "hdfs://HadoopMaster:9000/out/wc/"};

//本地路径
String[] args0 = { "./data/wc.txt",
"out/wc/"};

int ec = ToolRunner.run( new Configuration(), new WCRunner(), args0);
System. exit(ec);
}

@Override
public Configuration getConf() {
// TODO Auto-generated method stub
return null;
}

@Override
public void setConf(Configuration arg0) {
// TODO Auto-generated method stub

}

}

Hadoop MapReduce编程 API入门系列之wordcount版本5(九)的更多相关文章

  1. Hadoop MapReduce编程 API入门系列之wordcount版本1(五)

    这个很简单哈,编程的版本很多种. 代码版本1 package zhouls.bigdata.myMapReduce.wordcount5; import java.io.IOException; im ...

  2. Hadoop MapReduce编程 API入门系列之wordcount版本4(八)

    这篇博客,给大家,体会不一样的版本编程. 是将map.combiner.shuffle.reduce等分开放一个.java里.则需要实现Tool. 代码 package zhouls.bigdata. ...

  3. Hadoop MapReduce编程 API入门系列之wordcount版本3(七)

    这篇博客,给大家,体会不一样的版本编程. 代码 package zhouls.bigdata.myMapReduce.wordcount3; import java.io.IOException; i ...

  4. Hadoop MapReduce编程 API入门系列之wordcount版本2(六)

    这篇博客,给大家,体会不一样的版本编程. 代码 package zhouls.bigdata.myMapReduce.wordcount4; import java.io.IOException; i ...

  5. Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)

    不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...

  6. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本3(九)

    不多说,直接上干货! 下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 下面是版本2. Hadoop MapReduce编程 API入门系列之挖掘气象数 ...

  7. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(十)

    下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUni ...

  8. Hadoop MapReduce编程 API入门系列之join(二十六)(未完)

    不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如 ...

  9. Hadoop MapReduce编程 API入门系列之MapReduce多种输入格式(十七)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.ScoreCount; import java.io.DataInput; import java.i ...

随机推荐

  1. AI.框架理论.语义网.语言间距.孤单

    刷个博客,转载自于科学网:AI.框架理论.语义网.语言间距.孤单 一:引言: AI几乎是计算机科学家的梦想,自动化比计算机发展的要早的多.早期的自动化节省了大量人力,激发了人类懒惰的滋长和对自身进化缓 ...

  2. Generics of a Higher Kind

    http://adriaanm.github.io/files/higher.pdf https://www.atlassian.com/blog/archives/scala-types-of-a- ...

  3. 504 Gateway Timeout 异常

    生产销售系统出现 504 Gateway Timeout 异常,其实就是服务器响应太慢导致nginx带来超时,先不说服务端慢的优化问题:只是单纯的解决504.到网上发现了一篇文章fix it Add ...

  4. 启动模拟器的qq

    #coding = utf-8from appium import webdriver '''1.手机类型2.版本3.手机的唯一标识 deviceName4.app 包名appPackage5.app ...

  5. 15.3 Task Task.Yield和Task.Delay说明

    https://blog.csdn.net/hurrycxd/article/details/79827958 书上看到一个Task.Yield例子,Task.Yield方法创建一个立即返回的awai ...

  6. C#datetime判断日期输入是否正确

    //7.输入年月日,看看格式是否正确.利用DateTime. //(1) //DateTime dt=DateTime.Now; //Console.Write("请输入现在的年:" ...

  7. supervisor---elasticsearch 采坑回顾

    supervisor 是一个可以管理进程的软件,并监控进程状态,异常退出时能自动重启.它是通过fork/exec的方式把这些被管理的进程当作supervisor的子进程来启动,这样只要在supervi ...

  8. mybatis使用-helloword(一)

    前言 首先感谢https://my.oschina.net/zudajun/blog/665956(jd上也出书了貌似)  这位作者.让自己能系统的看完和理解第一个框架的源码(其实我反复看了4遍以上, ...

  9. 0208MySQL5.7之Group Replication

    转自http://blog.itpub.net/29510932/viewspace-2055679/ MySQL Group Replication: Hello World! 对测试版(on la ...

  10. JAVA实现多线程的两种方法

    参考URL: http://www.cnblogs.com/jbelial/archive/2013/03/17/2964472.html 1.继承 java.lang.Thread 类. 2.实现R ...