tensorflow在文本处理中的使用——Word2Vec预测
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理
代码地址:https://github.com/nfmcclure/tensorflow-cookbook
数据:http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polaritydata.tar.gz
问题:加载和使用预训练的嵌套,并使用这些单词嵌套进行情感分析,通过训练线性逻辑回归模型来预测电影的好坏
步骤如下:
- 必要包
- 声明模型参数
- 读取并转换文本数据集,划分训练集和测试集
- 构建图
- 训练
step1:必要包
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import random
import os
import pickle
import string
import requests
import collections
import io
import tarfile
import urllib.request
import text_helpers
from nltk.corpus import stopwords
from tensorflow.python.framework import ops
ops.reset_default_graph() os.chdir(os.path.dirname(os.path.realpath(__file__))) # Start a graph session
sess = tf.Session()
step2:声明模型参数
# Declare model parameters
embedding_size = 200
vocabulary_size = 2000
batch_size = 100
max_words = 100 # Declare stop words
stops = stopwords.words('english')
step3:读取并转换本文数据集,划分训练集和测试集
# Load Data
print('Loading Data')
data_folder_name = 'temp'
texts, target = text_helpers.load_movie_data(data_folder_name) # Normalize text
print('Normalizing Text Data')
texts = text_helpers.normalize_text(texts, stops) # Texts must contain at least 3 words
target = [target[ix] for ix, x in enumerate(texts) if len(x.split()) > 2]
texts = [x for x in texts if len(x.split()) > 2] # Split up data set into train/test
train_indices = np.random.choice(len(target), round(0.8*len(target)), replace=False)
test_indices = np.array(list(set(range(len(target))) - set(train_indices)))
texts_train = [x for ix, x in enumerate(texts) if ix in train_indices]
texts_test = [x for ix, x in enumerate(texts) if ix in test_indices]
target_train = np.array([x for ix, x in enumerate(target) if ix in train_indices])
target_test = np.array([x for ix, x in enumerate(target) if ix in test_indices]) # Load dictionary and embedding matrix加载CBOW嵌套中保存的单词字典
dict_file = os.path.join(data_folder_name, 'movie_vocab.pkl')
word_dictionary = pickle.load(open(dict_file, 'rb')) # Convert texts to lists of indices根据单词字典将加载的句子转化为数值型numpy数组
text_data_train = np.array(text_helpers.text_to_numbers(texts_train, word_dictionary))
text_data_test = np.array(text_helpers.text_to_numbers(texts_test, word_dictionary)) # Pad/crop movie reviews to specific length电影影评长度不一,不满100维的用0凑满,超过100维的取前100维
text_data_train = np.array([x[0:max_words] for x in [y+[0]*max_words for y in text_data_train]])
text_data_test = np.array([x[0:max_words] for x in [y+[0]*max_words for y in text_data_test]])
step4:构建图
print('Creating Model')
# Define Embeddings:创建嵌套变量,用于之后加载CBOW训练好的嵌套向量
embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) # Define model:
# Create variables for logistic regression变量
A = tf.Variable(tf.random_normal(shape=[embedding_size,1]))
b = tf.Variable(tf.random_normal(shape=[1,1])) # Initialize placeholders数据占位符
x_data = tf.placeholder(shape=[None, max_words], dtype=tf.int32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) # Lookup embeddings vectors
embed = tf.nn.embedding_lookup(embeddings, x_data)
# Take average of all word embeddings in documents计算句子中所有单词的平均嵌套
embed_avg = tf.reduce_mean(embed, 1) # Declare logistic model (sigmoid in loss function)
model_output = tf.add(tf.matmul(embed_avg, A), b) # Declare loss function (Cross Entropy loss)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(model_output, y_target)) # Actual Prediction
prediction = tf.round(tf.sigmoid(model_output))
predictions_correct = tf.cast(tf.equal(prediction, y_target), tf.float32)
accuracy = tf.reduce_mean(predictions_correct) # Declare optimizer
my_opt = tf.train.AdagradOptimizer(0.005)
train_step = my_opt.minimize(loss)
step5:训练
# Intitialize Variables
init = tf.initialize_all_variables()
sess.run(init) # Load model embeddings加载CBOW训练好的嵌套矩阵
model_checkpoint_path = os.path.join(data_folder_name,'cbow_movie_embeddings.ckpt')
saver = tf.train.Saver({"embeddings": embeddings})
saver.restore(sess, model_checkpoint_path) # Start Logistic Regression
print('Starting Model Training')
train_loss = []
test_loss = []
train_acc = []
test_acc = []
i_data = []
for i in range(10000):
rand_index = np.random.choice(text_data_train.shape[0], size=batch_size)
rand_x = text_data_train[rand_index]
rand_y = np.transpose([target_train[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) # Only record loss and accuracy every 100 generations
if (i+1)%100==0:
i_data.append(i+1)
train_loss_temp = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
train_loss.append(train_loss_temp) test_loss_temp = sess.run(loss, feed_dict={x_data: text_data_test, y_target: np.transpose([target_test])})
test_loss.append(test_loss_temp) train_acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x, y_target: rand_y})
train_acc.append(train_acc_temp) test_acc_temp = sess.run(accuracy, feed_dict={x_data: text_data_test, y_target: np.transpose([target_test])})
test_acc.append(test_acc_temp)
if (i+1)%500==0:
acc_and_loss = [i+1, train_loss_temp, test_loss_temp, train_acc_temp, test_acc_temp]
acc_and_loss = [np.round(x,2) for x in acc_and_loss]
print('Generation # {}. Train Loss (Test Loss): {:.2f} ({:.2f}). Train Acc (Test Acc): {:.2f} ({:.2f})'.format(*acc_and_loss))
可视化结果展示:
# Plot loss over time
plt.plot(i_data, train_loss, 'k-', label='Train Loss')
plt.plot(i_data, test_loss, 'r--', label='Test Loss', linewidth=4)
plt.title('Cross Entropy Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Cross Entropy Loss')
plt.legend(loc='upper right')
plt.show() # Plot train and test accuracy
plt.plot(i_data, train_acc, 'k-', label='Train Set Accuracy')
plt.plot(i_data, test_acc, 'r--', label='Test Set Accuracy', linewidth=4)
plt.title('Train and Test Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()
tensorflow在文本处理中的使用——Word2Vec预测的更多相关文章
- tensorflow在文本处理中的使用——Doc2Vec情感分析
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——CBOW词嵌入模型
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——skip-gram模型
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——TF-IDF算法
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——词袋
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——辅助函数
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——skip-gram & CBOW原理总结
摘自:http://www.cnblogs.com/pinard/p/7160330.html 先看下列三篇,再理解此篇会更容易些(个人意见) skip-gram,CBOW,Word2Vec 词向量基 ...
- TensorFlow实现文本情感分析详解
http://c.biancheng.net/view/1938.html 前面我们介绍了如何将卷积网络应用于图像.本节将把相似的想法应用于文本. 文本和图像有什么共同之处?乍一看很少.但是,如果将句 ...
- jQuery文本框中的事件应用
jQuery文本框中的事件应用 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "ht ...
随机推荐
- iOS 9适配
iOS 9系统策略更新,请开发者注意升级 近期苹果公司iOS 9系统策略更新,限制了http协议的访问,此外应用需要在“Info.plist”中将要使用的URL Schemes列为白名单,才可正常检查 ...
- python控制台输出带颜色文字的方法
目地:提高重要信息的可读性,方便用户阅读了. 书写格式如下: #格式: 设置颜色开始 :\033[显示方式;前景色;背景色m #说明: 前景色 背景色 颜色 --------------------- ...
- 阿里小二的日常工作要被TA们“接管”了!
昨天有人偷偷告诉我说 阿里巴巴其实是一家科技公司! 我想了整整一夜 究竟是谁走漏了风声 那么重点来了,阿里到底是如何在内部的办公.生活中,玩转“黑科技”的呢? AI取名:给你专属的“武侠”花名 花名是 ...
- CSS兼容性(IE和Firefox)技巧大全
CSS对浏览器的兼容性有时让人很头疼,或许当你了解当中的技巧跟原理,就会觉得也不是难事,从网上收集了IE7,6与Fireofx的兼容性处理技巧并整理了一下.对于web2.0的过度,请尽量用xhtml格 ...
- gpu命令cuda命令
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")os.envi ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第三章:变换
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第三章:变换 学习目标 理解如何用矩阵表示线性变换和仿射变换: 学习在 ...
- oracle copy
用法: COPY FROM <db> TO <db> <opt> <table> {(<cols>)} USING <sel> ...
- input禁止复制、粘贴、剪切
<input type="text" autocomplete="off"> <!-- autocomplete="off" ...
- C#中的字段,常量,属性与方法
以前是学C++的,初次学微软的C#头都大了.什么字段,常量,属性,方法......微软把别人的东西拿来糅合在C#里,弄成了一个“大杂烩”.其实,说到底,“字段”不就是“变量”吗,所谓的“方法”不就是“ ...
- ssh 出错 Permission denied (publickey,password).
将客户端的~/.ssh/know_hosts 文件删掉试试 ssh debug信息 ssh -vvv xxx@192.168.1.111