tf.nn.conv2d(value,filter,strides,[...])

对于图片来说

value :   形状通常是np.array()类型的4维数组也称tensor(张量),  (batch,height,width,channels) 可以理解为(图片样本的个数,高,宽,图片的颜色通道数)

value是待卷积的数据

filter: 卷积核 -4元素元组【height,width,in_channels,out_channels】,前面的3个参数和value的后面3个参数一一对应。但是out_channels不太确定,卷积核的个数,

    如果对一个shape 为[64,40,120,32]的数据进行卷积 filter=【3,3,32,64】,padding='same',strides=[1, 1, 1, 1] ,shape就变为了[64,40,120,64].

    [3,3,32]与[40,120,32]进行对应,32=32,则相当于 【3,3】对【40,120】,卷积时以【3*3】的扫描面积在【40,120】上进行扫描,每扫描一次,在结果集上产生一个【1,1】的数据单位

起始位置为【40,120】上面的最前面【3,3】的部分,

移动步调大小为【1,1,1,1】,即上下左右每次移动都只能移动1个单位,每次只能向一个方向移动,

same表示结束位置为 卷积核与源数据重叠,只需移动一个单位则不再重叠。

    所以,对于【40,120,32】经过【3,3,32】的扫描后变成【40,120,1】,64表示经过了64次这样的扫描,于成了【40,120,64】

padding: 扫描时对边角面积的处理模式 。SAME表示    扫描的的时候,对于源矩阵中 不足卷积核大小的 面积 仍进行扫描 ,直到卷积核的左边缘与源矩阵右边缘不相交为止。卷积核与源矩阵没有任何重叠部分 的扫描 不在结果集上产生数据单位。     VALID 表示,扫描时,对于源矩阵中 不足卷积核大小的 面积舍弃,不再扫描。

tf.nn.max_pool(value,ksize,strides)池化与卷积的过程原理基本一样,

ksize池化窗【batch,height,width,channels】,
只是卷积改变的是height,width,channels,池化通常改变的是height,width 。
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') #[64,20,60,32]

对于[64,20,60,32] 的矩阵进行池化,卷积核【2,2】,步长【2,2】表示卷积核的面积为2*2,每次扫描时移动的步调大小是2个单位,如果对于一个4*4的矩阵,进行这个种扫描,

扫描四次(2*2)即可扫描完成。如果是5*5的矩阵,不足卷积核的模式为same,则需扫描9次(3*3),valid模式4次(2*2)。

所以,【64,20,60,32】的矩阵池化后shape则变为 【64,10,30,32】。

tf.nn的conv2d卷积与max_pool池化的更多相关文章

  1. tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图

    tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...

  2. 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)

    基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...

  3. 【python实现卷积神经网络】池化层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  4. tf.nn.max_pool 池化

    tf.nn.max_pool( value, ksize, strides, padding, data_format='NHWC', name=None ) 参数: value:由data_form ...

  5. 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在

    1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...

  6. 深度学习原理与框架- tf.nn.atrous_conv2d(空洞卷积) 问题:空洞卷积增加了卷积核的维度,为什么不直接使用7*7呢

    空洞卷积, 从图中可以看出,对于一个3*3的卷积,可以通过使用增加卷积的空洞的个数,来获得较大的感受眼, 从第一幅图中可以看出3*3的卷积,可以通过补零的方式,变成7*7的感受眼,这里补零的个数为1, ...

  7. 深度学习原理与框架- tf.nn.conv2d_transpose(反卷积操作) tf.nn.conv2d_transpose(进行反卷积操作) 对于stride的理解存在问题?

    反卷积操作: 首先对需要进行维度扩张的feature_map 进行补零操作,然后使用3*3的卷积核,进行卷积操作,使得其维度进行扩张,图中可以看出,2*2的feature经过卷积变成了4*4.    ...

  8. 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用

    反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...

  9. 『TensorFlow』卷积层、池化层详解

    一.前向计算和反向传播数学过程讲解

随机推荐

  1. 又见链表 --- 另一种Creat方式与反转

    链表 作为一种数据结构,链表以其方便的增删查改功能,实现了无数经典有用的程序. 在之前的帖子里,我构建链表的方式是建立一个不储存数据的head节点,然后通过一边输入数据一边建立结点的方式构建整个链表. ...

  2. UVa 11235 频繁出现的数值

    https://vjudge.net/problem/UVA-11235 题意: 给出一个非降序排列的整数数组a1,a2,...,an,你的任务是对于一系列询问(i,j),回答ai,ai+1,...a ...

  3. 使用rz,sz需要安装lrzsz

    ... tar zxvf lrzsz-1.12.20.tar.gz 4.进入目录 cd lrzsz-1.12.20 5../configure --prefix=/usr/local/lrzsz 6. ...

  4. 【NOI2013】树的计数

    Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...

  5. 升级php7一些需要注意的地方

    1.升级过程涉及代码的主要处理的就是几个扩展(mysql.mssql .mcrypt.ereg)使用到的一些废弃函数(call_user_method.call_user_method_array等) ...

  6. 警告:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA

    加入 import os os.environ[' demo: import os os.environ[' import tensorflow as tf tf.enable_eager_execu ...

  7. 字符集(编码)转换_Windows

    ZC: 来自 我的项目 czgj ZC: (1).经过测试 MultiByteToWideChar(...) 返回的是 (需要的)WideChar[宽字符]的个数:(2).WideCharToMult ...

  8. js实现软件版本号的比较

    //js实现软件版本号的比较 //随机举两个例子 pc2.4.3 或者pc3.5.6 /** * 输入 v1,v2 * 返回true代表v1比v2的版本新,false则代表v1与v2相等或者v1< ...

  9. C# Random循环生成随机数重复问题解决方案

    C# Random循环生成随机数重复问题解决方案1.当我们通过Random生成随机数时,习惯的写法如下: int a=new Random().Next(0,100); 然后生成一个数据数没有任何问题 ...

  10. 如何对Visibility属性进行动画(XMAL /CS)

    更新:2007 年 11 月 对指定 Duration 内的一组 KeyFrames 中的 Object 属性值进行动画处理. 命名空间:  System.Windows.Media.Animatio ...