import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle n = 1000 #number of points to create
xcord = np.zeros((n))
ycord = np.zeros((n))
markers =[]
colors =[]
fw = open('D:\\LearningResource\\machinelearninginaction\\Ch02\\EXTRAS\\testSet.txt','w') for i in range(n):
[r0,r1] = np.random.standard_normal(2)
myClass = np.random.uniform(0,1)
if (myClass <= 0.16):
fFlyer = np.random.uniform(22000, 60000)
tats = 3 + 1.6*r1
markers.append(20)
colors.append(2.1)
classLabel = 1 #'didntLike'
print(("%d, %f, class1") % (fFlyer, tats))
elif ((myClass > 0.16) and (myClass <= 0.33)):
fFlyer = 6000*r0 + 70000
tats = 10 + 3*r1 + 2*r0
markers.append(20)
colors.append(1.1)
classLabel = 1 #'didntLike'
print(("%d, %f, class1") % (fFlyer, tats))
elif ((myClass > 0.33) and (myClass <= 0.66)):
fFlyer = 5000*r0 + 10000
tats = 3 + 2.8*r1
markers.append(30)
colors.append(1.1)
classLabel = 2 #'smallDoses'
print(("%d, %f, class2") % (fFlyer, tats))
else:
fFlyer = 10000*r0 + 35000
tats = 10 + 2.0*r1
markers.append(50)
colors.append(0.1)
classLabel = 3 #'largeDoses'
print(("%d, %f, class3") % (fFlyer, tats))
if (tats < 0):
tats =0
if (fFlyer < 0):
fFlyer =0
xcord[i] = fFlyer
ycord[i]=tats
fw.write("%d\t%f\t%f\t%d\n" % (fFlyer, tats, np.random.uniform(0.0, 1.7), classLabel)) fw.close() fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord,ycord, c=colors, s=markers)
type1 = ax.scatter([-10], [-10], s=20, c='red')
type2 = ax.scatter([-10], [-15], s=30, c='green')
type3 = ax.scatter([-10], [-20], s=50, c='blue')
ax.legend([type1, type2, type3], ["Class 1", "Class 2", "Class 3"], loc=2)
ax.axis([-5000,100000,-2,25])
plt.xlabel('Frequent Flyier Miles Earned Per Year')
plt.ylabel('Percentage of Body Covered By Tatoos')
plt.show()

...................................................

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle n = 1000 #number of points to create
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
xcord3 = []; ycord3 = []
markers =[]
colors =[]
fw = open('D:\\LearningResource\\machinelearninginaction\\Ch02\\EXTRAS\\testSet.txt','w') for i in range(n):
[r0,r1] = np.random.standard_normal(2)
myClass = np.random.uniform(0,1)
if (myClass <= 0.16):
fFlyer = np.random.uniform(22000, 60000)
tats = 3 + 1.6*r1
markers.append(20)
colors.append(2.1)
classLabel = 1 #'didntLike'
xcord1.append(fFlyer)
ycord1.append(tats)
elif ((myClass > 0.16) and (myClass <= 0.33)):
fFlyer = 6000*r0 + 70000
tats = 10 + 3*r1 + 2*r0
markers.append(20)
colors.append(1.1)
classLabel = 1 #'didntLike'
if (tats < 0):
tats =0
if (fFlyer < 0):
fFlyer =0
xcord1.append(fFlyer)
ycord1.append(tats)
elif ((myClass > 0.33) and (myClass <= 0.66)):
fFlyer = 5000*r0 + 10000
tats = 3 + 2.8*r1
markers.append(30)
colors.append(1.1)
classLabel = 2 #'smallDoses'
if (tats < 0):
tats =0
if (fFlyer < 0):
fFlyer =0
xcord2.append(fFlyer)
ycord2.append(tats)
else:
fFlyer = 10000*r0 + 35000
tats = 10 + 2.0*r1
markers.append(50)
colors.append(0.1)
classLabel = 3 #'largeDoses'
if (tats < 0): tats =0
if (fFlyer < 0): fFlyer =0
xcord3.append(fFlyer)
ycord3.append(tats)
fw.write("%d\t%f\t%f\t%d\n" % (fFlyer, tats, np.random.uniform(0.0, 1.7), classLabel)) fw.close()
fig = plt.figure()
ax = fig.add_subplot(111)
# ax.scatter(xcord,ycord, c=colors, s=markers)
type1 = ax.scatter(xcord1, ycord1, s=20, c='red')
type2 = ax.scatter(xcord2, ycord2, s=30, c='green')
type3 = ax.scatter(xcord3, ycord3, s=50, c='blue')
ax.legend([type1, type2, type3], ["Did Not Like", "Liked in Small Doses", "Liked in Large Doses"], loc=2)
ax.axis([-5000,100000,-2,25])
plt.xlabel('Frequent Flyier Miles Earned Per Year')
plt.ylabel('Percentage of Time Spent Playing Video Games')
plt.show()

import numpy as np
import matplotlib
import matplotlib.pyplot as plt def file2matrix(filename):
fr = open(filename)
returnMat = []
classLabelVector = [] #prepare labels return
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat.append([float(listFromLine[0]),float(listFromLine[1]),float(listFromLine[2])])
classLabelVector.append(int(listFromLine[-1]))
return np.array(returnMat),np.array(classLabelVector) fig = plt.figure()
ax = fig.add_subplot(111)
datingDataMat,datingLabels = file2matrix('D:\\LearningResource\\machinelearninginaction\\Ch02\\datingTestSet2.txt')
#ax.scatter(datingDataMat[:,1], datingDataMat[:,2])
ax.scatter(datingDataMat[:,1], datingDataMat[:,2], 15.0*np.array(datingLabels), 15.0*np.array(datingLabels))
ax.axis([-2,25,-0.2,2.0])
plt.xlabel('Percentage of Time Spent Playing Video Games')
plt.ylabel('Liters of Ice Cream Consumed Per Week')
plt.show()

吴裕雄 python 机器学习-KNN(2)的更多相关文章

  1. 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...

  2. 吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...

  3. 吴裕雄 python 机器学习-KNN算法(1)

    import numpy as np import operator as op from os import listdir def classify0(inX, dataSet, labels, ...

  4. 吴裕雄 python 机器学习——半监督学习LabelSpreading模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...

  5. 吴裕雄 python 机器学习——半监督学习标准迭代式标记传播算法LabelPropagation模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...

  6. 吴裕雄 python 机器学习——分类决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  7. 吴裕雄 python 机器学习——回归决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  8. 吴裕雄 python 机器学习——线性判断分析LinearDiscriminantAnalysis

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  9. 吴裕雄 python 机器学习——逻辑回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

随机推荐

  1. 通过mapreduce把mysql的一张表的数据导到另外一张表中

    怎么安装hadoop集群我在这里就不多说了,我这里安装的是三节点的集群 先在主节点安装mysql 启动mysql 登录mysql 创建数据库,创建表格,先把数据加载到表格 t ,表格t2是空的 mys ...

  2. angularjs中阻止事件冒泡,以及指令的注意点

    appModule.directive('newStr',function(){ return{ restrict:'AE', //阻止事件冒泡需要加$event参数 template:`<di ...

  3. python- 日志学习

    # @File : learn_logging.py #-*- coding:utf-8 -*- """ 日志:log 记录代码执行的过程 一旦记录下来,就可以根据日志去 ...

  4. java类库 collection与collections (转)

    http://www.cnblogs.com/dashi/p/3597937.html Java中Collection和Collections的区别 1.java.util.Collection 是一 ...

  5. [Unity插件]Lua行为树(十一):组合节点Parallel

    Parallel节点类似Sequence节点,不同在于Parallel会每帧执行所有的节点.当所有节点返回成功时返回成功,当其中一个节点返回失败时,返回失败并且结束所有的子节点运行. 例如说,给Seq ...

  6. 怎么分辨是eclipse还是 android studio开发的

    eclipse开发的一般都会带.classpath文件.Android studio开发的一般都会有.gradle文件夹和build.gradle文件    

  7. [Android] android.util.Log

    android.util.Log常用的方法有以下5个:Log.v() Log.d() Log.i()  Log.w() 以及 Log.e() .根据首字母对应VERBOSE,DEBUG,INFO, W ...

  8. uva-10026-贪心

    题意:有N项工作,每项工作完成需要n天,如果不开始做每天罚fee,开始做即不罚钱,求任务的执行顺序,使得罚钱最少.如果有多组答案,取下标排列最小的那组 解题思路: 考虑工作tn(dn,fn) , 假如 ...

  9. 关于dumper和mysqldump的

    最近在做版本更新 使用dumper在连接阿里云的RDS的时候 老是提示 需要超级管理员权限 无能只能使用系统自带的mysqldump了  语句简单方便 而且导出的表 没有加载库信息 mysqldump ...

  10. http etag

    基础知识 1) 什么是”Last-Modified”?          在浏览器第一次请求某一个URL时,服务器端的返回状态会是200,内容是你请求的资源,同时有一个Last-Modified的属性 ...