【BZOJ3105】新Nim游戏(线性基)

题面

BZOJ

Description

传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同)。两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴。可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿。拿走最后一根火柴的游戏者胜利。

本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。可以一堆都不拿,但不可以全部拿走。第二回合也一样,第二个游戏者也有这样一次机会。从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样。

如果你先拿,怎样才能保证获胜?如果可以获胜的话,还要让第一回合拿的火柴总数尽量小。

Input

第一行为整数k。即火柴堆数。第二行包含k个不超过109的正整数,即各堆的火柴个数。

Output

输出第一回合拿的火柴数目的最小值。如果不能保证取胜,输出-1。

Sample Input

6

5 5 6 6 5 5

Sample Output

21

HINT

k<=100

题解

很显然,就是让你选择和尽可能小的数,使得剩下的数的任意子集的异或和不为\(0\)

排序之后,依次插入线性基中贪心即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct xxj
{
int p[30];
void insert(int x)
{
for(int i=29;~i;--i)
{
if(!(x&(1<<i)))continue;
if(!p[i]){p[i]=x;break;}
x^=p[i];
}
}
int Query(int x)
{
for(int i=29;~i;--i)
{
if(!(x&(1<<i)))continue;
x^=p[i];
}
return x;
}
}G;
int n,a[500];
ll ans=0;
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
sort(&a[1],&a[n+1]);
for(int i=n;i;--i)
if(!G.Query(a[i]))ans+=a[i];
else G.insert(a[i]);
printf("%lld\n",ans);
return 0;
}

【BZOJ3105】新Nim游戏(线性基)的更多相关文章

  1. BZOJ3105:[CQOI2013]新Nim游戏(线性基,贪心)

    Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴 ...

  2. BZOJ 3105 [CQOI2013]新Nim游戏 ——线性基

    [题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即 ...

  3. [CQOI2013]新Nim游戏 线性基

    题面 题面 题解 首先我们知道nim游戏先手必败当且仅当所有石堆异或和为0,因此我们的目标就是要使对手拿石堆的时候,无论如何都不能使剩下的石堆异或和为0. 对于一个局面,如果我们可以选取一些可以凑出0 ...

  4. BZOJ 3105: [cqoi2013]新Nim游戏(线性基)

    解题思路 \(nim\)游戏先手必胜的条件是异或和不为\(0\),也就是说第一个人拿走了若干堆后不管第二个人怎么拿都不能将剩余堆的异或和变成\(0\).考虑线性基,其实就是每个数对线性基都有贡献,任何 ...

  5. 洛谷$P$4301 $[CQOI2013]$新$Nim$游戏 线性基+博弈论

    正解:线性基 解题报告: 传送门! 这题其实就是个博弈论+线性基,,,而且博弈论还是最最基础的那个结论,然后线性基也是最最基础的那个板子$QwQ$ 首先做这题的话需要一点点儿博弈论的小技能,,,这题的 ...

  6. BZOJ.3105.[CQOI2013]新Nim游戏(线性基 贪心 博弈论)

    题目链接 如果后手想要胜利,那么在后手第一次取完石子后 可以使石子数异或和为0.那所有数异或和为0的线性基长啥样呢,不知道.. 往前想,后手可以取走某些石子使得剩下石子异或和为0,那不就是存在异或和为 ...

  7. BZOJ-3105: 新Nim游戏 (nim博弈&线性基)

    pro: 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...

  8. BZOJ3105 新Nim游戏 【拟阵】

    题目分析: 我不知道啥是拟阵啊,但有大佬说线性基相关的都是拟阵,所以直接贪心做了. 题目代码: #include<bits/stdc++.h> using namespace std; ; ...

  9. 【BZOJ3105】[cqoi2013]新Nim游戏 贪心+线性基

    [BZOJ3105][cqoi2013]新Nim游戏 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个 ...

随机推荐

  1. TCP的三次握手和四次分手

    TCP的三次握手 图解:     • 第一次握手:客户端发送syn包到服务器,并进入syn_send状态,等待服务器进行确认: • 第二次握手:服务器收到客户端的syn包,必须确认客户的SYN,同时自 ...

  2. javaweb(三十八)——事务

    一.事务的概念 事务指逻辑上的一组操作,组成这组操作的各个单元,要不全部成功,要不全部不成功. 例如:A——B转帐,对应于如下两条sql语句  update from account set mone ...

  3. oracle数据库之组函数

    组函数也叫聚合函数,用来对一组值进行运算,并且可以返回单个值 常见的组函数: (1)count(*),count(列名)  统计行数:找到所有不为 null 的数据来统计行数 (2)avg(列名)  ...

  4. MSCOCO - COCO API 的安装

    在 Windows 下安装 COCO API 的方法. 使用 pip 命令进行安装: pip install git+https://github.com/philferriere/cocoapi.g ...

  5. Hands on Machine Learning with sklearn and TensorFlow —— 一个完整的机器学习项目(加州房地产)

    数据集地址:https://github.com/ageron/handson-ml/tree/master/datasets 先行知识准备:NumPy,Pandas,Matplotlib的模块使用 ...

  6. node stream流

    stream 模块可以通过以下方式使用: const stream = require('stream');   Node.js 中有四种基本的流类型: Writable - 可写入数据的流(例如 f ...

  7. python3【基础】-集合

    集合( set):把不同的元素组成一起形成集合,是python基本的数据类型. 集合元素(set elements):组成集合的成员(不可重复) class set(object) | set() - ...

  8. JavaScript之函数柯里化

    什么是柯里化(currying)? 维基百科中的解释是:柯里化是把接受多个参数的函数变换成接受一个单一参数(最初函数的第一个参数)的函数,并且返回接受余下的参数而且返回结果的新函数的技术.意思就是当函 ...

  9. Heavy Cargo POJ 2263 (Floyd传递闭包)

    Description Big Johnsson Trucks Inc. is a company specialized in manufacturing big trucks. Their lat ...

  10. Walking Between Houses(贪心+思维)

    Walking Between Houses There are nn houses in a row. They are numbered from 11 to nn in order from l ...