【BZOJ3105】新Nim游戏(线性基)

题面

BZOJ

Description

传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同)。两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴。可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿。拿走最后一根火柴的游戏者胜利。

本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。可以一堆都不拿,但不可以全部拿走。第二回合也一样,第二个游戏者也有这样一次机会。从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样。

如果你先拿,怎样才能保证获胜?如果可以获胜的话,还要让第一回合拿的火柴总数尽量小。

Input

第一行为整数k。即火柴堆数。第二行包含k个不超过109的正整数,即各堆的火柴个数。

Output

输出第一回合拿的火柴数目的最小值。如果不能保证取胜,输出-1。

Sample Input

6

5 5 6 6 5 5

Sample Output

21

HINT

k<=100

题解

很显然,就是让你选择和尽可能小的数,使得剩下的数的任意子集的异或和不为\(0\)

排序之后,依次插入线性基中贪心即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct xxj
{
int p[30];
void insert(int x)
{
for(int i=29;~i;--i)
{
if(!(x&(1<<i)))continue;
if(!p[i]){p[i]=x;break;}
x^=p[i];
}
}
int Query(int x)
{
for(int i=29;~i;--i)
{
if(!(x&(1<<i)))continue;
x^=p[i];
}
return x;
}
}G;
int n,a[500];
ll ans=0;
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
sort(&a[1],&a[n+1]);
for(int i=n;i;--i)
if(!G.Query(a[i]))ans+=a[i];
else G.insert(a[i]);
printf("%lld\n",ans);
return 0;
}

【BZOJ3105】新Nim游戏(线性基)的更多相关文章

  1. BZOJ3105:[CQOI2013]新Nim游戏(线性基,贪心)

    Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴 ...

  2. BZOJ 3105 [CQOI2013]新Nim游戏 ——线性基

    [题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即 ...

  3. [CQOI2013]新Nim游戏 线性基

    题面 题面 题解 首先我们知道nim游戏先手必败当且仅当所有石堆异或和为0,因此我们的目标就是要使对手拿石堆的时候,无论如何都不能使剩下的石堆异或和为0. 对于一个局面,如果我们可以选取一些可以凑出0 ...

  4. BZOJ 3105: [cqoi2013]新Nim游戏(线性基)

    解题思路 \(nim\)游戏先手必胜的条件是异或和不为\(0\),也就是说第一个人拿走了若干堆后不管第二个人怎么拿都不能将剩余堆的异或和变成\(0\).考虑线性基,其实就是每个数对线性基都有贡献,任何 ...

  5. 洛谷$P$4301 $[CQOI2013]$新$Nim$游戏 线性基+博弈论

    正解:线性基 解题报告: 传送门! 这题其实就是个博弈论+线性基,,,而且博弈论还是最最基础的那个结论,然后线性基也是最最基础的那个板子$QwQ$ 首先做这题的话需要一点点儿博弈论的小技能,,,这题的 ...

  6. BZOJ.3105.[CQOI2013]新Nim游戏(线性基 贪心 博弈论)

    题目链接 如果后手想要胜利,那么在后手第一次取完石子后 可以使石子数异或和为0.那所有数异或和为0的线性基长啥样呢,不知道.. 往前想,后手可以取走某些石子使得剩下石子异或和为0,那不就是存在异或和为 ...

  7. BZOJ-3105: 新Nim游戏 (nim博弈&线性基)

    pro: 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...

  8. BZOJ3105 新Nim游戏 【拟阵】

    题目分析: 我不知道啥是拟阵啊,但有大佬说线性基相关的都是拟阵,所以直接贪心做了. 题目代码: #include<bits/stdc++.h> using namespace std; ; ...

  9. 【BZOJ3105】[cqoi2013]新Nim游戏 贪心+线性基

    [BZOJ3105][cqoi2013]新Nim游戏 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个 ...

随机推荐

  1. protobuf工程的编译以及使用

    一. 获取Protocol Buffer 1.1 获得源码 Github:ProtocolBuffer源码 Git clone之:git clone https://github.com/google ...

  2. info信息的获取

    一.绝对路径(_SERVER[“SCRIPT_FILENAME”])这个是最常用,也是最有效的一个办法,找到phpinfo()页面可以直接找到网站的绝对路径,对于写shell和信息搜集是必不可少的.二 ...

  3. Jmeter使用HTTP代理服务器录制脚本

    使用Jmeter录制脚本通常使用Badboy工具录制或者Jmeter自带的HTTP代理服务器录制脚本,这里说一下使用HTTP代理服务器录制时遇到的问题. 1.  Jmeter安装 下载得到Jmeter ...

  4. Openwrt之移动硬盘ext3/ext4格式化工具

    在给openwrt挂载移动硬盘的时候,最好是ext3/ext4方式,但在windows下苦于无法找到合适的工具进行格式化. 踅摸了半天,终于找到了它:MiniTool Partion  Wizard ...

  5. hadoop HA sshfen切换隔离时无法跳转ssh: bash: fuser: 未找到命令

    在zkfc的日志里面,有一个warn:PATH=$PATH:/sbin:/usr/sbin fuser -v -k -n tcp 8090 via ssh: bash: fuser: 未找到命令原因是 ...

  6. Scrum立会报告+燃尽图(十月二十日总第十一次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2246 项目地址:https://git.coding.net/zhang ...

  7. Alpha发布—文案+美工展示

    目录 团队简介 项目进展 组内分工 队员总结 后期计划 一.团队简介 二.项目进展 从选题发布到今天的Alpha发布,我们团队经历了许许多多的磨难.我们最终设计了如下的功能:首页.班级.个人.更多.打 ...

  8. struts通配符*的使用

    <action name="user_*" class="com.wangcf.UserAction" method="{1}"> ...

  9. c# dictionnary根据value查找对应的key

    属性方法中并没有包含此功能,因此需要自己自定义一个方法: string regionName = ""; if (ControlForm.swichLanguage.Contain ...

  10. DEBUG_NEW和THIS_FILE

    C++ 的一个 比较晦涩难懂的特点是你可以重载 new 操作符,并且你甚至可以给它附加参数.通常,操作符 new 只接受拟分配对象的大小:        void* operator new(size ...