机器学习—集成学习(GBDT)
一、原理部分:
图片形式~



二、sklearn实现:
可以看看这个:https://blog.csdn.net/han_xiaoyang/article/details/52663170
1、分类:
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
import numpy as np digits = load_digits()
x_data = digits.data
y_data = digits.target x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,random_state = 1)
#第一轮,确定n=90
gbdt = GradientBoostingClassifier()
model_gbdt1 = GridSearchCV(gbdt,param_grid=({'n_estimators':np.arange(50,200,10)}),cv=5)
model_gbdt1.fit(x_train,y_train)
print(model_gbdt1.best_params_)
y_hat1 = model_gbdt1.predict(x_test)
print(accuracy_score(y_hat1,y_test)) #第二轮
gbdt = GradientBoostingClassifier(n_estimators=90)
model_gbdt2 = GridSearchCV(gbdt,param_grid=({'learning_rate':[0.01,0.03]}),cv=5)
model_gbdt2.fit(x_train,y_train)
print(model_gbdt2.best_params_)
y_hat2 = model_gbdt2.predict(x_test)
print(accuracy_score(y_hat2,y_test)) #第三轮,确定层数:2
gbdt = GradientBoostingClassifier(n_estimators=90,learning_rate=0.3,subsample=0.8)
model_gbdt3 = GridSearchCV(gbdt,param_grid=({'max_depth':[2,4]}),cv=5)
model_gbdt3.fit(x_train,y_train)
print(model_gbdt3.best_params_)
y_hat3 = model_gbdt3.predict(x_test)
print(accuracy_score(y_hat3,y_test)) #第四轮,确定降采样
gbdt = GradientBoostingClassifier(n_estimators=90,learning_rate=0.3,max_depth=2)
model_gbdt4 = GridSearchCV(gbdt,param_grid=({'subsample':[0.8,0.9]}),cv=5)
model_gbdt4.fit(x_train,y_train)
print(model_gbdt4.best_params_)
y_hat4 = model_gbdt4.predict(x_test)
print(accuracy_score(y_hat4,y_test))
最后结果,结果也是很好,跟svm差不多吧。可能是我调参不够好,不过暂时不纠结这个
{'subsample': 0.8}
0.986666666667
机器学习—集成学习(GBDT)的更多相关文章
- 机器学习:集成学习:随机森林.GBDT
集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测 ...
- 机器学习--集成学习(Ensemble Learning)
一.集成学习法 在机器学习的有监督学习算法中,我们的目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往不这么理想,有时我们只能得到多个有偏好的模型(弱监督模型,在某些方面表现的比较好) ...
- 机器学习——集成学习(Bagging、Boosting、Stacking)
1 前言 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < ...
- [机器学习]集成学习--bagging、boosting、stacking
集成学习简介 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务. 如何产生"好而不同"的个体学习器,是集成学习研究的核心. 集成学习的思路是通过 ...
- python大战机器学习——集成学习
集成学习是通过构建并结合多个学习器来完成学习任务.其工作流程为: 1)先产生一组“个体学习器”.在分类问题中,个体学习器也称为基类分类器 2)再使用某种策略将它们结合起来. 通常使用一种或者多种已有的 ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
随机推荐
- String..lastIndexOf(".") 返回-1的思考
String s = tableName.substring(tableName.lastIndexOf(".") + 1); 如果有tableName有'.',那么返回正确的截取 ...
- Data_Structure03-栈和队列
一.学习总结 1.写出你认为本周学习中比较重要的知识点关键词 ·抽象数据类型 ·栈和队列 2.思维导图 二.PTA实验作业 选题: 1.7-1 jmu-字符串是否对称(20 分) 2.7-4(选做) ...
- UDP协议发包的使用(DatagramSocket、DatagramPacket)
1.UDP 是User Datagram Protocol的简称, 中文名是用户数据报协议,是OSI(Open System Interconnection,开放式系统互联) 参考模型中一种无连接的传 ...
- 【UVALive】4094 WonderTeam(神结论)
题目 传送门:QWQ 分析 好神的结论啊 看代码吧(Length只有85) 代码 顺手压了压代码 目前代码长度rk1 vjudge #include <iostream> ?:n ...
- Python中小整数对象池和大整数对象池
1. 小整数对象池 整数在程序中的使用非常广泛,Python为了优化速度,使用了小整数对象池, 避免为整数频繁申请和销毁内存空间. Python 对小整数的定义是 [-5, 256] 这些整数对象是提 ...
- django rest_framework 框架的使用02
rest_framework 访问频率的限制(节流) 对于用户访问频率的显示,rest_framework 也有自己的类进行约束 先来一个自己的基于它的类的节流类的限制 class VisitCont ...
- Oracle NVL与NVL2函数
nvl( ) 函数 从两个表达式返回一个非 null 值. 语法 NVL(eExpression1, eExpression2) 参数 eExpression1, eExpression2 如果 eE ...
- string ids=aduuids.Aggregate("", (m, n) => m + n+",").TrimEnd(',');
string ids=aduuids.Aggregate("", (m, n) => m + n+",").TrimEnd(',');
- zmq消息订阅
一个需求,用户预约了手机超时没有使用,要通知到预约的用户“设备超时”. 我本来是自己这一端计时然后超时后推送通知的. 但是上海测说他那边计时,然后释放手机.我这边只要订阅他那边的消息就好了. 外部的应 ...
- FoxPro 数据库文件及记录命令
ADDTABLE 在当前数据库中添加一个自由表 APPEND 在表的末尾添加一个或多个新记录 APPEND FROM ARRAY 由数组添加记录到表中 APPEND FROM 从一个文件中读入记录,追 ...