吴裕雄 数据挖掘与分析案例实战(12)——SVM模型的应用
import pandas as pd
# 导入第三方模块
from sklearn import svm
from sklearn import model_selection
from sklearn import metrics
# 读取外部数据
letters = pd.read_csv(r'F:\\python_Data_analysis_and_mining\\13\\letterdata.csv')
print(letters.shape)
# 数据前5行
print(letters.head())
# 将数据拆分为训练集和测试集
predictors = letters.columns[1:]
X_train,X_test,y_train,y_test = model_selection.train_test_split(letters[predictors], letters.letter, test_size = 0.25, random_state = 1234)
# 使用网格搜索法,选择线性可分SVM“类”中的最佳C值
C=[0.05,0.1,0.5,1,2,5]
parameters = {'C':C}
grid_linear_svc = model_selection.GridSearchCV(estimator = svm.LinearSVC(),param_grid =parameters,scoring='accuracy',cv=5,verbose =1)
# 模型在训练数据集上的拟合
grid_linear_svc.fit(X_train,y_train)
# 返回交叉验证后的最佳参数值
print(grid_linear_svc.best_params_, grid_linear_svc.best_score_)
# 模型在测试集上的预测
pred_linear_svc = grid_linear_svc.predict(X_test)
# 模型的预测准确率
metrics.accuracy_score(y_test, pred_linear_svc)

# 使用网格搜索法,选择非线性SVM“类”中的最佳C值
kernel=['rbf','linear','poly','sigmoid']
C=[0.1,0.5,1,2,5]
parameters = {'kernel':kernel,'C':C}
grid_svc = model_selection.GridSearchCV(estimator = svm.SVC(),param_grid =parameters,scoring='accuracy',cv=5,verbose =1)
# 模型在训练数据集上的拟合
grid_svc.fit(X_train,y_train)
# 返回交叉验证后的最佳参数值
print(grid_svc.best_params_, grid_svc.best_score_)
# 模型在测试集上的预测
pred_svc = grid_svc.predict(X_test)
# 模型的预测准确率
metrics.accuracy_score(y_test,pred_svc)
# 读取外部数据
forestfires = pd.read_csv(r'F:\\python_Data_analysis_and_mining\\13\\forestfires.csv')
print(forestfires.shape)
# 数据前5行
print(forestfires.head())
# 删除day变量
forestfires.drop('day',axis = 1, inplace = True)
# 将月份作数值化处理
forestfires.month = pd.factorize(forestfires.month)[0]
# 预览数据前5行
print(forestfires.head())
# 导入第三方模块
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import norm
# 绘制森林烧毁面积的直方图
sns.distplot(forestfires.area, bins = 50, kde = True, fit = norm, hist_kws = {'color':'steelblue'},
kde_kws = {'color':'red', 'label':'Kernel Density'},
fit_kws = {'color':'black','label':'Nomal', 'linestyle':'--'})
# 显示图例
plt.legend()
# 显示图形
plt.show()

# 导入第三方模块
from sklearn import preprocessing
import numpy as np
from sklearn import neighbors
# 对area变量作对数变换
y = np.log1p(forestfires.area)
# 将X变量作标准化处理
predictors = forestfires.columns[:-1]
X = preprocessing.scale(forestfires[predictors])
print(X.shape)
print(X)
# 将数据拆分为训练集和测试集
X_train,X_test,y_train,y_test = model_selection.train_test_split(X, y, test_size = 0.25, random_state = 1234)
# 构建默认参数的SVM回归模型
svr = svm.SVR()
# 模型在训练数据集上的拟合
svr.fit(X_train,y_train)
# 模型在测试上的预测
pred_svr = svr.predict(X_test)
# 计算模型的MSE
a = metrics.mean_squared_error(y_test,pred_svr)
print(a)
# 使用网格搜索法,选择SVM回归中的最佳C值、epsilon值和gamma值
epsilon = np.arange(0.1,1.5,0.2)
C= np.arange(100,1000,200)
gamma = np.arange(0.001,0.01,0.002)
parameters = {'epsilon':epsilon,'C':C,'gamma':gamma}
grid_svr = model_selection.GridSearchCV(estimator = svm.SVR(),param_grid =parameters,
scoring='neg_mean_squared_error',cv=5,verbose =1, n_jobs=2)
# 模型在训练数据集上的拟合
grid_svr.fit(X_train,y_train)
# 返回交叉验证后的最佳参数值
print(grid_svr.best_params_, grid_svr.best_score_)
# 模型在测试集上的预测
pred_grid_svr = grid_svr.predict(X_test)
# 计算模型在测试集上的MSE值
print(metrics.mean_squared_error(y_test,pred_grid_svr))

吴裕雄 数据挖掘与分析案例实战(12)——SVM模型的应用的更多相关文章
- 吴裕雄 数据挖掘与分析案例实战(15)——DBSCAN与层次聚类分析
# 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsfr ...
- 吴裕雄 数据挖掘与分析案例实战(10)——KNN模型的应用
# 导入第三方包import pandas as pd # 导入数据Knowledge = pd.read_excel(r'F:\\python_Data_analysis_and_mining\\1 ...
- 吴裕雄 数据挖掘与分析案例实战(5)——python数据可视化
# 饼图的绘制# 导入第三方模块import matplotlibimport matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['S ...
- 吴裕雄 数据挖掘与分析案例实战(3)——python数值计算工具:Numpy
# 导入模块,并重命名为npimport numpy as np# 单个列表创建一维数组arr1 = np.array([3,10,8,7,34,11,28,72])print('一维数组:\n',a ...
- 吴裕雄 数据挖掘与分析案例实战(2)——python数据结构及方法、控制流、字符串处理、自定义函数
list1 = ['张三','男',33,'江苏','硕士','已婚',['身高178','体重72']]# 取出第一个元素print(list1[0])# 取出第四个元素print(list1[3] ...
- 吴裕雄 数据挖掘与分析案例实战(14)——Kmeans聚类分析
# 导入第三方包import pandas as pdimport numpy as np import matplotlib.pyplot as pltfrom sklearn.cluster im ...
- 吴裕雄 数据挖掘与分析案例实战(13)——GBDT模型的应用
# 导入第三方包import pandas as pdimport matplotlib.pyplot as plt # 读入数据default = pd.read_excel(r'F:\\pytho ...
- 吴裕雄 数据挖掘与分析案例实战(8)——Logistic回归分类模型
import numpy as npimport pandas as pdimport matplotlib.pyplot as plt # 自定义绘制ks曲线的函数def plot_ks(y_tes ...
- 吴裕雄 数据挖掘与分析案例实战(7)——岭回归与LASSO回归模型
# 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import mod ...
随机推荐
- 使用redis防止商品超发
redis不仅仅是单纯的缓存,它还有一些特殊的功能,在一些特殊场景上很好用.redis中key的原子自增incrby和判断key不存在再写入的setnx方法,可以有效的防止超发. 下面使用两个不同的方 ...
- MVC文件图片ajax上传轻量级解决方案,使用客户端JSAjaxFileUploader插件01-单文件上传
前段时间做了几个关于图片.文件上传的Demo,使用客户端Query-File-Upload插件和服务端Badkload组件实现多文件异步上传,比如"MVC文件上传04-使用客户端jQuery ...
- ASP.NET 实现验证码以及刷新验证码
实现代码 /// <summary> /// 生成验证码图片,保存session名称VerificationCode /// </summary> public static ...
- ToString yyyy-MM-dd ,MM 小写的故事。
ToString MM 小写,有可能时间转为 :2013-49-02,放到数据库中查询,就报错.
- PHP $_SERVER 祥细解读(有事例)
为了看的更明白,添加上了事例 例如 'www.ceshiyuming.com/ceshi.php?p=123';Array( [HOSTNAME] => [PATH] => ...
- 【textarea】在JSP上添加textarea-文本域 调试使用
<body> <form name="dataEventDisplay"> <table border="2" bordercol ...
- 中点Brehensam画圆算法
#include<stdio.h> #include<stdlib.h> #include<graphics.h> #include<math.h> v ...
- R语言学习——向量,矩阵
在R中,基本的数据结构有:向量,矩阵,数组,数据框,列表,因子,函数等. 向量:一系列同类型的有序元素构成. 向量是一维结构. 向量是R最简单的数据结构,在R中没有标量. 标量被看成1个元素的向量. ...
- java中使HttpDelete可以发送body信息
java中使HttpDelete可以发送body信息RESTful api中用到了DELETE方法,android开发的同事遇到了问题,使用HttpDelete执行DELETE操作的时候,不能携带bo ...
- 转载CopyOnWriteArrayList
转载原文 http://www.cnblogs.com/dolphin0520/p/3938914.html Copy-On-Write简称COW,是一种用于程序设计中的优化策略.其基本思路是,从一开 ...