http://acm.hdu.edu.cn/showproblem.php?pid=4059

定义S = 1^4 + 2^4 + 3^4+.....+n^4。如今减去与n互质的数的4次方。问共降低了多少。

容斥原理。能够先把与n不互质的数的4次方求出来。那就先对n进行质因子分解,对质因子的组合运用容斥原理。质因子个数为奇数就加,偶数就减。事实上与求[1,n]内与n互质的数的个数类似,该题重点是计算,防止乘法溢出。

对于求解1^4 + 2^4 + 3^4+.....+n^4,能够先类比1^2+2^2+...+n^2的求法,那么求4次方,

首先(n+1)^5= n^5 + 5*n^4 + 10*n^3 + 10*n^2 + 5*n^1 + 1.

那么2^5 = (1+1)^5 = 1^5 + 5*1^4 + 10*1^3 + 10*1^2 + 5*1^1 + 1.

3^5 = (2+1)^5 = 2^5 + 5*2^4 + 10*2^3 + 10*2^2 + 5*2^1 + 1.

........

........

(n+1)^5 = n^5 + 5*n^4 + 10*n^3 + 10*n^2 + 5*n^1 + 1.

将上述全部等式相加。两边抵消同样项,得到(n+1)^5 = 5*(1^4+2^4+……n^4)+10*(1^3+2^3+……+n^3)+10*(1^2+2^2+……+n^2)+5*(1+2+……+n)+n+1,

将1^3+2^3+……+n^3 = (n+1)^2*n^2/4和1^2+2^2+……+n^2
= (n*(n+1)*(2*n+1))/6带入上式,化简得到:

1^4+2^4+……n^4
= (n*(n+1)*(2n+1)*(3*n*n+3*n-1))/30。

由于要取余,要求30对1000000007的逆元,用扩展欧几里得就可以。

#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <bitset>
#include <list>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
#define LL __int64
//#define LL long long
#define eps 1e-9
#define PI acos(-1.0)
using namespace std;
const int maxn = 10010;
const LL mod = 1000000007;
LL n;
int fac[maxn];
int facCnt;
int prime[maxn];
LL ni,nii; //求30对mod的逆元。
LL extend_gcd(LL a, LL b, LL &x, LL &y)
{
if(b == 0)
{
x = 1;
y = 0;
return a;
}
LL d = extend_gcd(b,a%b,x,y);
LL t = x;
x = y;
y = t-a/b*y;
return d;
} LL pow_4(LL t)
{
LL anw =( ((t*(t+1))%mod*(2*t+1)%mod) * (((3*t*t)%mod+(3*t)%mod-1+mod)%mod )%mod*ni)%mod;
return anw;
} LL cal(LL m)
{
LL t = n/m;
LL anw1 = m;
anw1 = (anw1*m)%mod;
anw1 = (anw1*m)%mod;
anw1 = (anw1*m)%mod;
LL anw2 = pow_4(t);
LL anw = (anw1*anw2)%mod;
return anw;
} void getPrime()
{
bool flag[maxn];
memset(flag,false,sizeof(flag));
prime[0] = 0;
for(int i = 2; i < maxn; i++)
{
if(flag[i] == false)
{
prime[++prime[0]] = i;
for(int j = 1; j <= prime[0]&&prime[j]*i < maxn; j++)
{
flag[prime[j]*i] = true;
if(i%prime[j] == 0)
break;
}
}
}
} void getFac()
{
facCnt = 0;
LL tmp = n;
for(int i = 1; i <= prime[0] && prime[i]*prime[i] <= tmp; i++)
{
if(tmp % prime[i] == 0)
{
fac[facCnt++] = prime[i];
while(tmp % prime[i] == 0)
tmp /= prime[i];
}
if(tmp == 1) break;
}
if(tmp > 1)
fac[facCnt++] = tmp;
} int main()
{
int test;
scanf("%d",&test);
getPrime();
extend_gcd(30,mod,ni,nii);
while(test--)
{
scanf("%I64d",&n);
getFac();
LL ans = 0; for(int i = 1; i < (1<<facCnt); i++)
{
LL mul = 1;
int cnt = 0;
for(int j = 0; j < facCnt; j++)
{
if(i&(1<<j))
{
cnt++;
mul *= fac[j];
}
}
if(cnt&1)
ans = (ans + cal(mul) )%mod;
else
ans = (ans - cal(mul) )%mod;
}
ans = ((pow_4(n) - ans)%mod+mod)%mod; //减法时取余
printf("%I64d\n",ans);
}
return 0;
}

hdu 4059 The Boss on Mars(纳入和排除)的更多相关文章

  1. HDU 4059 The Boss on Mars 容斥原理

    The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  2. HDU 4059 The Boss on Mars(容斥原理 + 四次方求和)

    传送门 The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  3. 数论 + 容斥 - HDU 4059 The Boss on Mars

    The Boss on Mars Problem's Link Mean: 给定一个整数n,求1~n中所有与n互质的数的四次方的和.(1<=n<=1e8) analyse: 看似简单,倘若 ...

  4. HDU 4059 The Boss on Mars(容斥原理)

    The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. hdu 4059 The Boss on Mars

    The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. hdu 4059 The Boss on Mars 容斥

    题目链接 求出ai^4+a2^4+......an^4的值, ai为小于n并与n互质的数. 用容斥做, 先求出1^4+2^4+n^4的和的通项公式, 显然是一个5次方程, 然后6个方程6个未知数, 我 ...

  7. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

  8. HDU 4059 容斥原理+快速幂+逆元

    E - The Boss on Mars Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64 ...

  9. The Boss on Mars

    The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. 京东商城招聘scala 高级开发工程师 T3级别

    岗位级别:T3 岗位职责: 1.参与自动调价.匹配系统的设计和实现 岗位要求: 1. 一年以上scala开发经验2.良好的函数式编程能力3. JAVA基础扎实4.熟悉大数据处理,有hadoop/hba ...

  2. OpenCV 通过 MFC 的 Picture Control 控件操作图像

    假设希望对显示在MFC Picture Control 控件里的图像进行操作,比方画线画点之类的,能够利用 OpenCV 结合 MFC 本身的鼠标响应函数来实现. 怎样将图像显示到 Picture C ...

  3. word2vec 中的数学原理具体解释(四)基于 Hierarchical Softmax 的模型

      word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了非常多人的关注.因为 word2vec 的作者 Tomas M ...

  4. hdu 3790 (最短路径问题dijkstra)

    主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起 ...

  5. iOS一些推荐的学习路径发展

    iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何開始,然后我吧啦吧啦回答写了非常多.既然敲了那么多字,我就把我写的回复也贴到博客里来分享.希望能对大家有帮助.欢迎大家 ...

  6. ECSHOP如何增加红包序列号字符

    ECSHOP系统线下发放红包时系统生成的红包序列号是在10000的基础上增加四位随机数字.如果当我们要发放大额度红包的时候,这样的序列号规 则难免给人不安全的感觉,万一有无聊的人,蒙几个红包序列号出来 ...

  7. uva 1557 - Calendar Game(博弈)

    option=com_onlinejudge&Itemid=8&page=show_problem&problem=4332" target="_blank ...

  8. 利用jsoup爬取百度网盘资源分享连接(多线程)

    突然有一天就想说能不能用某种方法把百度网盘上分享的资源连接抓取下来,于是就动手了.知乎上有人说过最好的方法就是http://pan.baidu.com/wap抓取,一看果然链接后面的uk值是一串数字, ...

  9. RMQ之ST算法

    #include <stdio.h> #include <string.h> ; int a[N]; ]; inline int min(const int &a, c ...

  10. c++程序代写(qq:928900200)

     1. Both main memory and secondary storage are types of memory. Describe the difference between the  ...