filter2D

Convolves an image with the kernel.

C++: void filter2D(InputArray src, OutputArray dst, int ddepth, InputArraykernel, Point anchor=Point(-1,-1), double delta=0, int borderType=BORDER_DEFAULT )
Python: cv2.filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]]) → dst
C: void cvFilter2D(const CvArr* src, CvArr* dst, const CvMat* kernel, CvPointanchor=cvPoint(-1,-1) )
Python: cv.Filter2D(src, dst, kernel, anchor=(-1, -1)) → None
Parameters:
  • src – input image.
  • dst – output image of the same size and the same number of channels as src.
  • ddepth –
    desired depth of the destination image; if it is negative, it will be the same as src.depth(); the following combinations ofsrc.depth() and ddepth are supported:
    • src.depth() = CV_8Uddepth = -1/CV_16S/CV_32F/CV_64F
    • src.depth() = CV_16U/CV_16Sddepth = -1/CV_32F/CV_64F
    • src.depth() = CV_32Fddepth = -1/CV_32F/CV_64F
    • src.depth() = CV_64Fddepth = -1/CV_64F

    when ddepth=-1, the output image will have the same depth as the source.

  • kernel – convolution kernel (or rather a correlation kernel), a single-channel floating point matrix; if you want to apply different kernels to different channels, split the image into separate color planes using split() and process them individually.
  • anchor – anchor of the kernel that indicates the relative position of a filtered point within the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor is at the kernel center.
  • delta – optional value added to the filtered pixels before storing them in dst.
  • borderType – pixel extrapolation method (seeborderInterpolate() for details).

The function applies an arbitrary linear filter to an image. In-place operation is supported. When the aperture is partially outside the image, the function interpolates outlier pixel values according to the specified border mode.

# -*- coding: utf-8 -*-
#卷积滤波
#code:myhaspl@myhaspl.com
import cv2
import numpy as np
fn="test2.jpg"
myimg=cv2.imread(fn)
img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY)
myh=np.array([[0,1,0],[1,-4,1],[0,1,0]])
jgimg=cv2.filter2D(img,-1,myh)
cv2.imshow('src',img)
cv2.imshow('dst',jgimg)
cv2.waitKey()
cv2.destroyAllWindows()

本博客全部内容是原创,假设转载请注明来源

http://blog.csdn.net/myhaspl/

数学之路-python计算实战(19)-机器视觉-卷积滤波的更多相关文章

  1. 数学之路-python计算实战(21)-机器视觉-拉普拉斯线性滤波

    拉普拉斯线性滤波,.边缘检測  . When ksize == 1 , the Laplacian is computed by filtering the image with the follow ...

  2. 数学之路-python计算实战(17)-机器视觉-滤波去噪(中值滤波)

    Blurs an image using the median filter. C++: void medianBlur(InputArray src, OutputArray dst, int ks ...

  3. 数学之路-python计算实战(20)-机器视觉-拉普拉斯算子卷积滤波

    拉普拉斯算子进行二维卷积计算,线性锐化滤波 # -*- coding: utf-8 -*- #线性锐化滤波-拉普拉斯算子进行二维卷积计算 #code:myhaspl@myhaspl.com impor ...

  4. 数学之路-python计算实战(15)-机器视觉-滤波去噪(归一化块滤波)

    # -*- coding: utf-8 -*- #code:myhaspl@myhaspl.com #归一化块滤波 import cv2 import numpy as np fn="tes ...

  5. 数学之路-python计算实战(14)-机器视觉-图像增强(直方图均衡化)

    我们来看一个灰度图像,让表示灰度出现的次数,这样图像中灰度为 的像素的出现概率是  是图像中全部的灰度数, 是图像中全部的像素数,  实际上是图像的直方图,归一化到 . 把  作为相应于  的累计概率 ...

  6. 数学之路-python计算实战(9)-机器视觉-图像插值仿射

    插值 Python: cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) → dst interpolation – interpol ...

  7. 数学之路-python计算实战(13)-机器视觉-图像增强

    指数变换的基本表达式为:y=bc(x-a)-1 当中參数b.c控制曲线的变换形状,參数a控制曲线的位置. 指数变换的作用是扩展图像的高灰度级.压缩低灰度级.能够用于亮度过高的图像 本博客全部内容是原创 ...

  8. 数学之路-python计算实战(16)-机器视觉-滤波去噪(邻域平均法滤波)

    # -*- coding: utf-8 -*- #code:myhaspl@myhaspl.com #邻域平均法滤波,半径为2 import cv2 import numpy as np fn=&qu ...

  9. 数学之路-python计算实战(18)-机器视觉-滤波去噪(双边滤波与高斯滤波 )

    高斯滤波就是对整幅图像进行加权平均的过程.每个像素点的值,都由其本身和邻域内的其它像素值经过加权平均后得到.高斯滤波的详细操作是:用一个模板(或称卷积.掩模)扫描图像中的每个像素.用模板确定的邻域内像 ...

随机推荐

  1. javascript模板引擎之artTemplate 学习笔记

    <div id="content"></div><div id="content1"></div><h1& ...

  2. QT---系统托盘图标不显示原因

    很久没用QT写UI相关的东西了,有些东西都忘记了,今天竟然忘记了系统托盘图标是怎么显示的了.下面说下解决方法 1.现象, 设置了QSystemTrayIcon的Icon图标,但就是不显示自己设置的图片 ...

  3. delphi实现穿XP防火墙

    procedure TForm1.Button1Click(Sender: TObject);var   FwMgr,Profile,FwApp: variant;begin   FwMgr := C ...

  4. Jetty:配置JSP支持

    选择JSP实现 从Jetty-9.2開始,使用Apache Jasper作为默认JSP容器实现.在前面的版本号中使用的是Glassfish Jasper,在后面的版本号中也能够继续使用它. Jetty ...

  5. MySQL :: MySQL 5.0 Reference Manual :: 14.4 The MEMORY (HEAP) Storage Engine

    MySQL :: MySQL 5.0 Reference Manual :: 14.4 The MEMORY (HEAP) Storage Engine The MEMORY (HEAP) Stora ...

  6. .NET Page页面事件执行顺序,以及其作用(OnPreInit()、OnInit()等)

    以按钮事件为测试标准 1. OnPreInit //检查 IsPostBack 属性来确定是不是第一次处理该页. //创建或重新创建动态控件. //动态设置主控页. //动态设置 Theme 属性. ...

  7. 【Python】Python 基础知识

    数字和表达式 >>> 2+3 5 >>> 1.0/2.0 0.5 >>> 1.0//2.0 # // 0.0 >>> 1%2 # ...

  8. Abot 爬虫

    Abot 爬虫分析-整体结构 1. 引言 在Github 上搜索下Web Crawler 有上千个开源的项目,但是C#的仅仅只有168 个,相比于Java 或者Python 确实少的可怜.如果按照St ...

  9. codeforces 577

    codeforces 577A 题目链接:http://codeforces.com/problemset/problem/577/A 题目大意:给出一个n*n的表格,每个表格对应的值为横坐标*纵坐标 ...

  10. 人脸对齐ASM-AAM-CLM的一些总结

    源地址:http://blog.csdn.net/piaomiaoju/article/details/8918107 ASM算法相对容易,其中STASM是目前正面脸当中比较好的算法,原作者和CLM比 ...