【自然语言处理】--视觉问答(Visual Question Answering,VQA)从初始到应用
一、前述
视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务。这一任务的定义如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻译为中文:一个VQA系统以一张图片和一个关于这张图片形式自由、开放式的自然语言问题作为输入,以生成一条自然语言答案作为输出。简单来说,VQA就是给定的图片进行问答。
VQA系统需要将图片和问题作为输入,结合这两部分信息,产生一条人类语言作为输出。针对一张特定的图片,如果想要机器以自然语言来回答关于该图片的某一个特定问题,我们需要让机器对图片的内容、问题的含义和意图以及相关的常识有一定的理解。VQA涉及到多方面的AI技术(图1):细粒度识别(这位女士是白种人吗?)、 物体识别(图中有几个香蕉?)、行为识别(这位女士在哭吗?)和对问题所包含文本的理解(NLP)。综上所述,VQA是一项涉及了计算机视觉(CV)和自然语言处理(NLP)两大领域的学习任务。它的主要目标就是让计算机根据输入的图片和问题输出一个符合自然语言规则且内容合理的答案。
二、具体步骤
2.1 第一步,生成答案
2.2 第二步,处理输⼊源数据
2.2.1 处理输⼊源数据:图⽚
卷积CNN结合VGG-16模型
VGG-16的标准构造 (keras)
def VGG_16(weights_path=None):
model = Sequential()
model.add(ZeroPadding2D((1,1),input_shape=(3,224,224)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='softmax'))
if weights_path:
model.load_weights(weights_path)
return model
2.2.2 处理输⼊源数据:⽂字
2.3 第三步, 选取VQA模型-MLP
2.3.1 选取VQA模型-MLP
2.3.2 选取VQA模型-LSTM
【自然语言处理】--视觉问答(Visual Question Answering,VQA)从初始到应用的更多相关文章
- Hierarchical Question-Image Co-Attention for Visual Question Answering
Hierarchical Question-Image Co-Attention for Visual Question Answering NIPS 2016 Paper: https://arxi ...
- Visual Question Answering with Memory-Augmented Networks
Visual Question Answering with Memory-Augmented Networks 2018-05-15 20:15:03 Motivation: 虽然 VQA 已经取得 ...
- 第八讲_图像问答Image Question Answering
第八讲_图像问答Image Question Answering 课程结构 图像问答的描述 具备一系列AI能力:细分识别,物体检测,动作识别,常识推理,知识库推理..... 先要根据问题,判断什么任务 ...
- 论文笔记:Visual Question Answering as a Meta Learning Task
Visual Question Answering as a Meta Learning Task ECCV 2018 2018-09-13 19:58:08 Paper: http://openac ...
- 论文阅读:Learning Visual Question Answering by Bootstrapping Hard Attention
Learning Visual Question Answering by Bootstrapping Hard Attention Google DeepMind ECCV-2018 2018 ...
- Learning Conditioned Graph Structures for Interpretable Visual Question Answering
Learning Conditioned Graph Structures for Interpretable Visual Question Answering 2019-05-29 00:29:4 ...
- VQA视觉问答基础知识
本文记录简单了解VQA的过程,目的是以此学习图像和文本的特征预处理.嵌入以及如何设计分类loss等等. 参考资料: https://zhuanlan.zhihu.com/p/40704719 http ...
- 论文:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering-阅读总结
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering-阅读总结 笔记不能简单的抄写文中 ...
- 【论文小综】基于外部知识的VQA(视觉问答)
我们生活在一个多模态的世界中.视觉的捕捉与理解,知识的学习与感知,语言的交流与表达,诸多方面的信息促进着我们对于世界的认知.作为多模态领域的一个典型场景,VQA旨在结合视觉的信息来回答所提出的问题 ...
随机推荐
- Ubuntu常用命令总结
1. Ubuntu切换到root用户的方法 sudo su or sudo -i 退出root用户 exit 2. mv:移动文件或文件夹 移动文件和文件夹只有只有四种可能: 文件移动到文件(文件重命 ...
- DDD实战进阶第一波(十一):开发一般业务的大健康行业直销系统(实现经销商代注册用例与登录令牌分发)
前两篇文章主要实现了经销商代注册的仓储与领域逻辑.经销商登录的仓储与相关逻辑,这篇文章主要讲述经销商代注册的用例与经销商登录的查询功能. 一.经销商代注册用例 在经销商代注册用例中,我们需要传递经销商 ...
- Java 字符流文件读写
上篇文章,我们介绍了 Java 的文件字节流框架中的相关内容,而我们本篇文章将着重于文件字符流的相关内容. 首先需要明确一点的是,字节流处理文件的时候是基于字节的,而字符流处理文件则是基于一个个字符为 ...
- Log4j2中的同步日志与异步日志
1.背景 Log4j 2中记录日志的方式有同步日志和异步日志两种方式,其中异步日志又可分为使用AsyncAppender和使用AsyncLogger两种方式. 2.Log4j2中的同步日志 所谓同步日 ...
- Java8-6-Predicate接口详解
转自https://segmentfault.com/a/1190000012256677 Predicate函数式接口的主要作用就是提供一个test方法,接受一个参数返回一个布尔类型,Predica ...
- dummy_backend_queue.go
) } func (d *dummyBackendQueue) Empty() error { return nil }
- java技术树+必读书籍
引子 本篇文章用技术树的形式来展示java相关技术栈.所有技术点有博客的都自带链接,没有的后续加上. 必读书籍推荐: 1.java基础: <effective java>-->四星推 ...
- linux文件的基本属性
Linux 文件基本属性 Linux系统是一种典型的多用户系统,不同的用户处于不同的地位,拥有不同的权限.为了保护系统的安全性,Linux系统对不同的用户访问同一文件(包括目录文件)的权限做了不同的规 ...
- koa+mysql+vue+socket.io全栈开发之web api篇
目标是建立一个 web QQ的项目,使用的技术栈如下: 后端是基于koa2 的 web api 服务层,提供curd操作的http接口,登录验证使用的是 json web token,跨域方案使用的是 ...
- Redis持久化方式的选择
本文将介绍Redis持久化的两种方式:快照持久化和AOF持久化,并对两种方法进行分析和对比,方便在实际中做出选择. 持久化 什么是持久化 Redis所有数据保存在内存中,对数据的更新将异步地保存到磁盘 ...