数学之路-python计算实战(15)-机器视觉-滤波去噪(归一化块滤波)
# -*- coding: utf-8 -*-
#code:myhaspl@myhaspl.com
#归一化块滤波
import cv2
import numpy as np
fn="test3.jpg"
myimg=cv2.imread(fn)
img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) #加上高斯噪声,能够參考曾经博文中的内容
......
......
#滤波去噪
lbimg=cv2.blur(newimg,(3,3))
cv2.imshow('src',newimg)
cv2.imshow('dst',lbimg)
cv2.waitKey()
cv2.destroyAllWindows()
右图是加上噪声,左图是去除噪声后,尽管进行了图像模糊,但仍能比較清晰
依据原理,使用第3个脉冲响应函数(也有人称它为核函数),例如以下:
本博客全部内容是原创,假设转载请注明来源
http://blog.csdn.net/myhaspl/
用python实现这个算法
#code:myhaspl@myhaspl.com
#归一化块滤波
...
...
#用第3个脉冲响应函数
a=1/16.0
kernel=a*np.array([[1,2,1],[2,4,2],[1,2,1]])
for y in xrange(1,myh-1):
for x in xrange(1,myw-1):
lbimg[y,x]=np.sum(kernel*tmpimg[y-1:y+2,x-1:x+2])
print ".",
效果例如以下图
Blurs an image using the normalized box filter.
- C++: void blur(InputArray src, OutputArray dst, Size ksize, Pointanchor=Point(-1,-1), int borderType=BORDER_DEFAULT )
- Python: cv2.blur(src, ksize[, dst[, anchor[, borderType]]]) → dst
-
Parameters: - src – input image; it can have any number of channels, which are processed independently, but the depth should be CV_8U, CV_16U,CV_16S, CV_32F or CV_64F.
- dst – output image of the same size and type as src.
- ksize – blurring kernel size.
- anchor – anchor point; default value Point(-1,-1) means that the anchor is at the kernel center.
- borderType – border mode used to extrapolate pixels outside of the image.
注意,blur函数使用了第1个脉冲响应函数,例如以下:
The function smoothes an image using the kernel:
# -*- coding: utf-8 -*-
#code:myhaspl@myhaspl.com
#归一化块滤波
import cv2
import numpy as np
fn="test3.jpg"
myimg=cv2.imread(fn)
img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) #加上椒盐噪声
#灰阶范围
w=img.shape[1]
h=img.shape[0]
newimg=np.array(img)
#噪声点数量
noisecount=100000
for k in xrange(0,noisecount):
xi=int(np.random.uniform(0,newimg.shape[1]))
xj=int(np.random.uniform(0,newimg.shape[0]))
newimg[xj,xi]=255 #滤波去噪
lbimg=cv2.blur(newimg,(5,5))
cv2.imshow('src',newimg)
cv2.imshow('dst',lbimg)
cv2.waitKey()
cv2.destroyAllWindows()
本博客全部内容是原创,假设转载请注明来源
http://blog.csdn.net/myhaspl/
数学之路-python计算实战(15)-机器视觉-滤波去噪(归一化块滤波)的更多相关文章
- 数学之路-python计算实战(17)-机器视觉-滤波去噪(中值滤波)
Blurs an image using the median filter. C++: void medianBlur(InputArray src, OutputArray dst, int ks ...
- 数学之路-python计算实战(21)-机器视觉-拉普拉斯线性滤波
拉普拉斯线性滤波,.边缘检測 . When ksize == 1 , the Laplacian is computed by filtering the image with the follow ...
- 数学之路-python计算实战(20)-机器视觉-拉普拉斯算子卷积滤波
拉普拉斯算子进行二维卷积计算,线性锐化滤波 # -*- coding: utf-8 -*- #线性锐化滤波-拉普拉斯算子进行二维卷积计算 #code:myhaspl@myhaspl.com impor ...
- 数学之路-python计算实战(14)-机器视觉-图像增强(直方图均衡化)
我们来看一个灰度图像,让表示灰度出现的次数,这样图像中灰度为 的像素的出现概率是 是图像中全部的灰度数, 是图像中全部的像素数, 实际上是图像的直方图,归一化到 . 把 作为相应于 的累计概率 ...
- 数学之路-python计算实战(19)-机器视觉-卷积滤波
filter2D Convolves an image with the kernel. C++: void filter2D(InputArray src, OutputArray dst, int ...
- 数学之路-python计算实战(9)-机器视觉-图像插值仿射
插值 Python: cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) → dst interpolation – interpol ...
- 数学之路-python计算实战(13)-机器视觉-图像增强
指数变换的基本表达式为:y=bc(x-a)-1 当中參数b.c控制曲线的变换形状,參数a控制曲线的位置. 指数变换的作用是扩展图像的高灰度级.压缩低灰度级.能够用于亮度过高的图像 本博客全部内容是原创 ...
- 数学之路-python计算实战(16)-机器视觉-滤波去噪(邻域平均法滤波)
# -*- coding: utf-8 -*- #code:myhaspl@myhaspl.com #邻域平均法滤波,半径为2 import cv2 import numpy as np fn=&qu ...
- 数学之路-python计算实战(18)-机器视觉-滤波去噪(双边滤波与高斯滤波 )
高斯滤波就是对整幅图像进行加权平均的过程.每个像素点的值,都由其本身和邻域内的其它像素值经过加权平均后得到.高斯滤波的详细操作是:用一个模板(或称卷积.掩模)扫描图像中的每个像素.用模板确定的邻域内像 ...
随机推荐
- LeetCode 链表的插入排序
Sort a linked list using insertion sort 创建一个新的链表,将旧链表的节点插入到正确的位置 package cn.edu.algorithm.huawei; pu ...
- iOS内存管理 ARC与MRC
想驾驭一门语言,首先要掌握它的内存管理特性.iOS开发经历了MRC到ARC的过程,下面就记录一下本人对iOS内存管理方面的一些理解. 说到iOS开发,肯定离不开objective-c语言(以下简称OC ...
- BZOJ 2100: [Usaco2010 Dec]Apple Delivery( 最短路 )
跑两遍最短路就好了.. 话说这翻译2333 ---------------------------------------------------------------------- #includ ...
- bootstrap基础知识点YI
<!DOCTYPE html> <html lang="en"> ... </html> bootstrap页面都应该包含html5声明. 框架 ...
- 第三章 视图和URL配置
在Mysite文件夹中,创建一个views.py的空文件,输入: from django.http import HttpResponse def hello(request): return Htt ...
- 数据切分——Mysql分区表的建立及性能分析
Mysql的安装方法可以参考: http://blog.csdn.net/jhq0113/article/details/43812895 Mysql分区表的介绍可以参考: http://blog.c ...
- 《Android第一行代码》笔记
学习Android开发差点儿相同有两年时间了.期间也做了大大小小的一些项目.近来抽出闲暇想把Android基础强化一下,之前在网上看到了郭霖郭大神的几篇博客.从中受益不少.于是花了近一周时间看完了郭神 ...
- Chapter 2.策略模式
首先贴一段代码: package xiao; import java.util.Scanner; class CashSuper{ private int num; private dou ...
- 使用Android studio下载github上的工程及问题解决
Android studio内置了github的插件,可以直接下载github上的工程,感觉好爽啊.具体怎么做呢?1.如图所示操作,如果是初次使用会提示输入用户名密码. 2.等android stud ...
- Python函数式编程:Lambda表达式
首先我们要明白在编程语言中,表达式和语句的区别. 表达式是一个由变量.常量.有返回值的函数加运算符组成的一个式子,该式子是有返回值的 ,如 a + 1 就是个表达式, 单独的一个常量.变量 或函数调 ...