MapReduce计算模型的优化
MapReduce 计算模型的优化涉及了方方面面的内容,但是主要集中在两个方面:一是计算性能方面的优化:二是I/O操作方面的优化。这其中,又包含六个方面的内容。
1.任务调度
任务调度是Hadoop中非常重要的一环,这个优化又涉及两个方面的内容。计算方面,Hadoop总会优先将任务分配给空闲的机器,使所有的任务能公平地分享系统资源。I/O方面。Hadoop会尽量将Map任务分配给InputSplit所在的机器,以减少网络I/O的消耗。
2.数据预处理与InputSplit的大小
MapReduce任务擅长处理少量的大数据,而在处理大量的小数据时, MapReduce的性能就会逊色很多。因此在提交MapReduce任务前可以先对数据进行一次预处理,将数据 合并以提高MapReduce任务的执行效率,这个办法往往很有效。如果这还不行,可以参考Map任务的运行时间,当一个Map任务只需要运行几秒就可以结束时,就需要考虑是否应该给它分配更多的数据。通常而言,一个Map任务的运行时间在一分钟左右比较合适,可以通过设置Map的输入数据大小来调节Map的运行时间。在FilelnputFormat中(除了CombineFilelnputFormat ), Hadoop会在处理每个Block后将其作为一个InputSplit,因此合理地设置block块大小是很重要的调节方式。除此之外,也可以通过合理地设置Map任务的/数量来调节Map任务的数据输入。
3. Map和Reduce任务的数量
合理地设置Map任务与Reduce任务的数量对提高MapReduce任务的效率是非常重要的。默认的设置往往不能很好地体现出MapReduce任务的需求,不过,设置它们的数量也要有一定的实践经验。
4. Combine函数
Combine函数是用于本地合并数据的函数。在有些情况下, Map函数产生的中间数据会有很多是重复的,比如在一个简单的WordCount程序中,因为词频是接近与一个zipf分布的,每个Map任务可能会产生成千上万个<the, 1>记录,若将这些记录一一传送给Reduce任
务是很耗时的。所以, MapReduce框架运行用户写的combine函数用于本地合并,这会大大
减少网络I/O操作的消耗。此时就可以利用combine函数先计算出在这个Block中单词the的
个数。合理地设计combine函数会有效地减少网络传输的数据量,提高MapReduce的效率。
在MapReduce程序中使用combine很简单,只需在程序中添加如下内容:
在Hadoop中,可以自定义数据类型以实现更复杂的目的,比如,当读者想实现k-means算法(一个基础的聚类算法)时可以定义k个整数的集合。自定义Hadoop数据类型时,推荐自定义comparator来实现数据的二进制比较,这样可以省去数据序列化和反序列化。的时间,提高程序的运行效率.
MapReduce计算模型的优化的更多相关文章
- MapReduce计算模型
MapReduce计算模型 MapReduce两个重要角色:JobTracker和TaskTracker. MapReduce Job 每个任务初始化一个Job,没个Job划分为两个阶段:Map和 ...
- MapReduce计算模型二
之前写过关于Hadoop方面的MapReduce框架的文章MapReduce框架Hadoop应用(一) 介绍了MapReduce的模型和Hadoop下的MapReduce框架,此文章将进一步介绍map ...
- 【CDN+】 Spark入门---Handoop 中的MapReduce计算模型
前言 项目中运用了Spark进行Kafka集群下面的数据消费,本文作为一个Spark入门文章/笔记,介绍下Spark基本概念以及MapReduce模型 Spark的基本概念: 官网: http://s ...
- MapReduce 计算模型
前言 本文讲解Hadoop中的编程及计算模型MapReduce,并将给出在MapReduce模型下编程的基本套路. 模型架构 在Hadoop中,用于执行计算任务(MapReduce任务)的机器有两个角 ...
- 第四篇:MapReduce计算模型
前言 本文讲解Hadoop中的编程及计算模型MapReduce,并将给出在MapReduce模型下编程的基本套路. 模型架构 在Hadoop中,用于执行计算任务(MapReduce任务)的机器有两个角 ...
- 【MapReduce】二、MapReduce编程模型
通过前面的实例,可以基本了解MapReduce对于少量输入数据是如何工作的,但是MapReduce主要用于面向大规模数据集的并行计算.所以,还需要重点了解MapReduce的并行编程模型和运行机制 ...
- 【MapReduce】经常使用计算模型具体解释
前一阵子參加炼数成金的MapReduce培训,培训中的作业样例比較有代表性,用于解释问题再好只是了. 有一本国外的有关MR的教材,比較有用.点此下载. 一.MapReduce应用场景 MR能解决什么问 ...
- 重要 | Spark和MapReduce的对比,不仅仅是计算模型?
[前言:笔者将分上下篇文章进行阐述Spark和MapReduce的对比,首篇侧重于"宏观"上的对比,更多的是笔者总结的针对"相对于MapReduce我们为什么选择Spar ...
- 简述MapReduce计算框架原理
1. MapReduce基本编程模型和框架 1.1 MapReduce抽象模型 大数据计算的核心思想是:分而治之.如下图所示.把大量的数据划分开来,分配给各个子任务来完成.再将结果合并到一起输出.注: ...
随机推荐
- css @import 导入文件
导入另一个css文件 例如 <style type="text/css"> @import url(css/main.css); //导入css目录下的main.css ...
- mysql 与 oracle 的时间查询
关于时间区间查询 1.mysql select * from t_date a where date_format (a.delete_time,'%Y-%m-%d') <date_format ...
- ***远程连接MYSQL提示1130 - Host is not allowed to connect to this MySQL server
如果你想连接你的mysql的时候发生这个错误: ERROR 1130: Host '192.168.1.3' is not allowed to connect to this MySQL serve ...
- mysql使用错误
mysql运行报The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized or represents more than one time z ...
- Java - 数组排序 -- 浅析稳定性与复杂度
上次我们了解了对数组的基本操作,那么谈到数组,我们就不得不谈谈数组的排序 什么是排序 排序是计算机内经常进行的一种操作,其目的是将一组“无序”的记录序列调整为“有序”的记录序列 -- 百度百科 排序是 ...
- go语言实现https的简单get和post请求
package main import ( "crypto/tls" "fmt" "io" "io/ioutil" &q ...
- 【C语言编程练习】7.1 线型表就地逆置
写在前面的话:直接从第5章跳到了第7章数据结构的趣题,原因是前面的数学趣题做久了,会觉得稍许疲倦,所以想“变个口味”,以后数学趣题和数据结构混合着练习. 1. 题目要求 编写一个函数,实现顺序表的就地 ...
- 背包问题——dfs
背包问题——dfs 问题描述 解决思路 采用DFS搜索 其实也是回溯法 代码实现 #include<iostream> #include<vector> using nam ...
- 电梯模拟系统——BUAA OO第二单元作业总结
需求分析 官方需求 本次作业需要模拟一个多线程实时多电梯系统,从标准输入中输入请求信息,程序进行接收和处理,模拟电梯运行,将必要的运行信息通过输出接口进行输出. 本次作业电梯系统具有的功能为:上下行, ...
- Android像素密度单位解析
Android应用程序 res/drawable-hdpi drawable-xxhdpi 显示的不同 对比实验: 创建项目后,默认在相关文件目录中生成以下图标: hdpi --> 72px m ...