Spark Shuffle之Hash Shuffle
源文件放在github,如有谬误之处,欢迎指正。原文链接https://github.com/jacksu/utils4s/blob/master/spark-knowledge/md/hash-shuffle.md
正如你所知,spark实现了多种shuffle方法,通过 spark.shuffle.manager来确定。暂时总共有三种:hash shuffle、sort shuffle和tungsten-sort shuffle,从1.2.0开始默认为sort shuffle。本节主要介绍hash shuffle。
spark在1.2前默认为hash shuffle(spark.shuffle.manager = hash),但hash shuffle也经历了两个发展阶段。
第一阶段

上图有 4 个 ShuffleMapTask 要在同一个 worker node 上运行,CPU core 数为 2,可以同时运行两个 task。每个 task 的执行结果(该 stage 的 finalRDD 中某个 partition 包含的 records)被逐一写到本地磁盘上。每个 task 包含 R 个缓冲区,R = reducer 个数(也就是下一个 stage 中 task 的个数),缓冲区被称为 bucket,其大小为spark.shuffle.file.buffer.kb ,默认是 32KB(Spark 1.1 版本以前是 100KB)。
第二阶段
这样的实现很简单,但有几个问题:
1 产生的 FileSegment 过多。每个 ShuffleMapTask 产生 R(reducer 个数)个 FileSegment,M 个 ShuffleMapTask 就会产生 M * R 个文件。一般 Spark job 的 M 和 R 都很大,因此磁盘上会存在大量的数据文件。
2 缓冲区占用内存空间大。每个 ShuffleMapTask 需要开 R 个 bucket,M 个 ShuffleMapTask 就会产生 M * R 个 bucket。虽然一个 ShuffleMapTask 结束后,对应的缓冲区可以被回收,但一个 worker node 上同时存在的 bucket 个数可以达到 cores R 个(一般 worker 同时可以运行 cores 个 ShuffleMapTask),占用的内存空间也就达到了cores * R * 32 KB。对于 8 核 1000 个 reducer 来说,占用内存就是 256MB。
spark.shuffle.consolidateFiles默认为false,如果为true,shuffleMapTask输出文件可以被合并。如图

可以明显看出,在一个 core 上连续执行的 ShuffleMapTasks 可以共用一个输出文件 ShuffleFile。先执行完的 ShuffleMapTask 形成 ShuffleBlock i,后执行的 ShuffleMapTask 可以将输出数据直接追加到 ShuffleBlock i 后面,形成 ShuffleBlock i',每个 ShuffleBlock 被称为 FileSegment。下一个 stage 的 reducer 只需要 fetch 整个 ShuffleFile 就行了。这样,每个 worker 持有的文件数降为 cores * R。但是缓存空间占用大还没有解决。
总结
优点
- 快-不需要排序,也不需要维持hash表
- 不需要额外空间用作排序
- 不需要额外IO-数据写入磁盘只需一次,读取也只需一次
缺点
- 当partitions大时,输出大量的文件(cores * R),性能开始降低
- 大量的文件写入,使文件系统开始变为随机写,性能比顺序写要降低100倍
- 缓存空间占用比较大
当然,数据经过序列化、压缩写入文件,读取的时候,需要反序列化、解压缩。reduce fetch的时候有一个非常重要的参数spark.reducer.maxSizeInFlight,这里用 softBuffer 表示,默认大小为 48MB。一个 softBuffer 里面一般包含多个 FileSegment,但如果某个 FileSegment 特别大的话,这一个就可以填满甚至超过 softBuffer 的界限。如果增大,reduce请求的chunk就会变大,可以提高性能,但是增加了reduce的内存使用量。
如果排序在reduce不强制执行,那么reduce只返回一个依赖于map的迭代器。如果需要排序, 那么在reduce端,调用ExternalSorter。
参考文献
Spark Shuffle之Hash Shuffle的更多相关文章
- Spark RDD概念学习系列之Spark Hash Shuffle内幕彻底解密(二十)
本博文的主要内容: 1.Hash Shuffle彻底解密 2.Shuffle Pluggable解密 3.Sorted Shuffle解密 4.Shuffle性能优化 一:到底什么是Shuffle? ...
- spark性能调优(二) 彻底解密spark的Hash Shuffle
装载:http://www.cnblogs.com/jcchoiling/p/6431969.html 引言 Spark HashShuffle 是它以前的版本,现在1.6x 版本默应是 Sort-B ...
- 研究一下Spark Hash Shuffle 和 SortShuffle 原理机制
研究一下Spark Hash Shuffle 和 SortShuffle 原理机制研究一下Spark Hash Shuffle 和 SortShuffle 原理机制研究一下Spark Hash Shu ...
- Spark Shuffle原理、Shuffle操作问题解决和参数调优
摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuff ...
- 彻底搞懂spark的shuffle过程(shuffle write)
什么时候需要 shuffle writer 假如我们有个 spark job 依赖关系如下 我们抽象出来其中的rdd和依赖关系: E <-------n------, ...
- 【Spark调优】Shuffle原理理解与参数调优
[生产实践经验] 生产实践中的切身体会是:影响Spark性能的大BOSS就是shuffle,抓住并解决shuffle这个主要原因,事半功倍. [Shuffle原理学习笔记] 1.未经优化的HashSh ...
- Spark Shuffle之Sort Shuffle
源文件放在github,随着理解的深入,不断更新,如有谬误之处,欢迎指正.原文链接https://github.com/jacksu/utils4s/blob/master/spark-knowled ...
- Spark性能优化:shuffle调优
调优概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行 ...
- Spark技术内幕:Shuffle Map Task运算结果的处理
Shuffle Map Task运算结果的处理 这个结果的处理,分为两部分,一个是在Executor端是如何直接处理Task的结果的:还有就是Driver端,如果在接到Task运行结束的消息时,如何对 ...
随机推荐
- 1.Hadoop集群安装部署
Hadoop集群安装部署 1.介绍 (1)架构模型 (2)使用工具 VMWARE cenos7 Xshell Xftp jdk-8u91-linux-x64.rpm hadoop-2.7.3.tar. ...
- C语言数据结构与算法之深度、广度优先搜索
一.深度优先搜索(Depth-First-Search 简称:DFS) 1.1 遍历过程: (1)从图中某个顶点v出发,访问v. (2)找出刚才第一个被顶点访问的邻接点.访问该顶点.以这个顶点为新的顶 ...
- 理解同步,异步,阻塞,非阻塞,多路复用,事件驱动IO
以下是IO的一个基本过程 先理解一下用户空间和内核空间,系统为了保护内核数据,会将寻址空间分为用户空间和内核空间,32位机器为例,高1G字节作为内核空间,低3G字节作为用户空间.当用户程序读取数据的时 ...
- 20155232 2016-2017-3 《Java程序设计》第4周学习总结
20155232 2016-2017-3 <Java程序设计>第4周学习总结 教材学习内容总结 第六章 继承与多态 所谓继承就是避免多个类间重复定义共同行为. 1.重复在程序设计上就是不好 ...
- 20155337 《Java程序设计》实验一(Java开发环境的熟悉)实验报告
20155337 <Java程序设计>实验一(Java开发环境的熟悉)实验报告 一.实验内容及步骤 (一)使用JDK编译.运行简单的java程序 ·命令行下的程序开发 我在windows下 ...
- 有关Laravel 4 的 Homestead 安装部署的细节
对于Vagrant,我是相见恨晚的.有时候抽出几个小时的时间学会一种工具,对于将来可以节省几十甚至几百小时的时间. Vagant最大的好处就是节省了安装配置运行环境的时间,统一开发环境,同时可以最大限 ...
- DSP5509的USB协议开发
1. 使用的板子 2. 原理图相关,这个1.5K的上拉电阻,全速和高速上拉在D+,低速上拉在D- 3. 中断处理函数没有搞明白是什么意思?这个工程我怎么基本看不懂? interrupt void US ...
- MSP430的CAN通信发送
1. 电路图如下,RE是接收使能,DE是发送使能,看图的话,这个CAN只支持半双工 2. 使用MSP430F149,以下代码只有发送,其实用的是串口 #include <msp430x14x.h ...
- NumPy v1.15手册汉化
NumPy参考 数组创建 零 和 一 empty(shape[, dtype, order]):返回给定形状和类型的新数组,而不初始化条目 empty_like(prototype[, dtype, ...
- Zigbee系列(概览)
Zigbee技术特点 低速率: 数据传输速率只有20~250kb/s, 2.4GHZ提供250kb/s, 915MHz对应40kb/s, 868Mhz对应20kb/s 低功耗:睡眠模式设备使用电池供电 ...